Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Trichromatic color vision with only two spectrally distinct photopigments

Abstract

Protanomaly is a common, X-linked abnormality of color vision. Like people with normal color vision, protanomalous observers are trichromatic, but their ability to discriminate colors in the red–green part of the spectrum is reduced because the photopigments that mediate discrimination in this range are abnormally similar. Whereas normal subjects have pigments whose wavelengths of peak sensitivity differ by about 30 nm, the peak wavelengths for protanomalous observers are thought to differ by only a few nanometers. We found, however, that although this difference occurred in some protanomalous subjects, others had pigments whose peak wavelengths were identical. Genetic and psychophysical results from the latter class indicated that limited red–green discrimination can be achieved with pigments that have the same peak wavelength sensitivity and that differ only in optical density. A single amino acid substitution was correlated with trichromacy in these subjects, suggesting that differences in pigment sequence may regulate the optical density of the cone.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Theoretical spectral sensitivity curves for L and M cones in normal trichromats and M-cone subtypes in protanomalous trichromats.
Figure 2: Schematic representation of the X-encoded pigments in protanopes (dichromats) and protanomalous trichromats.
Figure 3: Rayleigh color-match data.

Similar content being viewed by others

References

  1. Dartnall, H. J., Bowmaker, J. K. & Mollon, J. D. Human visual pigments: microspectrophotometric results from the eye of seven persons. Proc. R. Soc. Lond. B Biol. Sci. 220, 115–130 ( 1983).

    Article  CAS  Google Scholar 

  2. Merbs, S. L. & Nathans, J. Absorption spectra of the hybrid pigments responsible for anomalous color vision. Science 258, 464–466 (1992).

    Article  CAS  Google Scholar 

  3. Oprian, D. D., Asenjo, A. B., Lee, N. & Pelletier, S. L. Design, chemical synthesis, and expression of genes for the three human color vision pigments. Biochemistry 30, 11367– 11372 (1991).

    Article  CAS  Google Scholar 

  4. Mollon, J. D. "Tho' she kneel'd in that place where they grew..." The uses and origins of primate colour vision. J. Exp. Biol. 146, 21–38 (1989).

    CAS  PubMed  Google Scholar 

  5. Nathans, J., Thomas, D. & Hogness, D. S. Molecular genetics of human color vision: The genes encoding blue, green, and red pigments. Science 232 , 193–202 (1986).

    Article  CAS  Google Scholar 

  6. Neitz, J., Neitz, M. & Jacobs, G. H. More than three different cone pigments among people with normal color vision. Vision Res. 33, 117–122 (1993).

    Article  CAS  Google Scholar 

  7. Winderickx, J. et al. Polymorphism in red photopigment underlies variation in colour matching. Nature 356, 431– 433 (1992).

    Article  CAS  Google Scholar 

  8. Nathans, J., Piantanida, T. P., Eddy, R. L., Shows, T. B. & Hogness, D. S. Molecular genetics of inherited variation in human color vision. Science 232, 203–210 (1986).

    Article  CAS  Google Scholar 

  9. Asenjo, A. B., Rim, J. & Oprian, D. D. Molecular determinants of human red/green color discrimination. Neuron 12, 1131–1138 (1994).

    Article  CAS  Google Scholar 

  10. Ibbotson, R. E., Hunt, D. M., Bowmaker, J. K. & Mollon, J. D. Sequence divergence and copy number of the middle- and long-wave photopigment genes in Old World monkey. Proc. R. Soc. Lond. B Biol. Sci. 247, 145–154 (1992).

    Article  CAS  Google Scholar 

  11. Merbs, S. L. & Nathans, J. Role of hydroxyl-bearing amino acids in differentially tuning the absorption spectra of the human red and green cone pigments. Photochem. Photobiol. 58, 706–710 (1993).

    Article  CAS  Google Scholar 

  12. Williams, A. J., Hunt, D. M., Bowmaker, J. K. & Mollon, J. D. The polymorphic photopigments of the marmoset: spectral tuning and genetic basis. EMBO J. 11, 2039– 2045 (1992).

    Article  CAS  Google Scholar 

  13. Neitz, M., Neitz, J. & Jacobs, G. H. Analysis of fusion gene and encoded photopigment of colour-blind humans. Nature 342, 679– 682 (1989).

    Article  CAS  Google Scholar 

  14. Neitz, J., Neitz, M. & Kainz, P. M. Visual pigment gene structure and the severity of human color vision defects. Science 274, 801– 804 (1996).

    Article  CAS  Google Scholar 

  15. Neitz, M., Neitz, J. & Jacobs, G. H. Genetic basis of photopigment variations in human dichromats. Vision Res. 35, 2095–2103 (1995).

    Article  CAS  Google Scholar 

  16. Neitz, M. & Neitz, J. Numbers and ratios of visual pigment genes for normal red–green color vision. Science 267, 1013–1016 (1995).

    Article  CAS  Google Scholar 

  17. Neitz, M. & Neitz, J. in Color Vision: Perspectives from Different Disciplines (eds. Backhaus, W. G. K., Kliegl, R. & Werner, J. S.) 101–119 (de Gruyter, New York, 1998).

    Book  Google Scholar 

  18. Shevell, S. K. & He, J. C. in Colour Vision Deficiencies XIII (ed. Cavonius, C. R.) 45–58 (Kluwer Academic, Dordrecht, 1997).

    Book  Google Scholar 

  19. He, J.C. & Shevell, S. K. Variation in color matching and discrimination among deuteranomalous trichromats: theoretical implications of small differences in photopigments. Vision Res. 35, 2579–2588 (1995).

    Article  CAS  Google Scholar 

  20. Shevell, S. K. & He, J. C. The visual photopigments of simple deuteranomalous trichromats inferred from color matching. Vision Res. 37, 1115–1127 (1997).

    Article  CAS  Google Scholar 

  21. Strutt, J. W. Experiments on colour. Nature 25, 64– 66 (1881).

  22. von Kries, J. Über die anomalen trichromatischen Farbensysteme. Z. Psychol. Physiol. Sinnesorgane 19, 63–69 (1899).

Download references

Acknowledgements

This work was funded by the NIH and Research to Prevent Blindness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Neitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neitz, J., Neitz, M., He, J. et al. Trichromatic color vision with only two spectrally distinct photopigments . Nat Neurosci 2, 884–888 (1999). https://doi.org/10.1038/13185

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/13185

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing