Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microstimulation of visual cortex affects the speed of perceptual decisions

Abstract

Direction-selective neurons in the middle temporal visual area (MT) are crucially involved in motion perception, although it is not known exactly how the activity of these neurons is interpreted by the rest of the brain. Here we report that in a two-alternative task, the activity of MT neurons is interpreted as evidence for one direction and against the other. We measured the speed and accuracy of decisions as rhesus monkeys performed a direction-discrimination task. On half of the trials, we stimulated direction-selective neurons in area MT, thereby causing the monkeys to choose the neurons' preferred direction more often. Microstimulation quickened decisions in favor of the preferred direction and slowed decisions in favor of the opposite direction. Even on trials in which microstimulation did not induce a preferred direction choice, it still affected response times. Our findings suggest that during the formation of a decision, sensory evidence for competing propositions is compared and accumulates to a decision-making threshold.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental design.
Figure 2: Microstimulation affects choice and response times.
Figure 3: Effect of microstimulation on response time and choice at different electrode sites.
Figure 4: Effect of microstimulation on error response times.
Figure 5: Response times reflect effective difficulty or net uncertainty.
Figure 6: Model of the decision process.

Similar content being viewed by others

References

  1. Vickers, D. Evidence for an accumulator model of psychophysical discrimination. Ergonomics 13, 37–58 (1970).

    Article  CAS  Google Scholar 

  2. Luce, R.D. Response Times (Oxford Univ. Press, New York, 1986).

    Google Scholar 

  3. Link, S.W. The Wave Theory of Difference and Similarity (Erlbaum, Hillsdale, 1992).

    Google Scholar 

  4. Ratcliff, R. & Rouder, J.N. Modeling response times for two-choice decisions. Psychol. Sci. 9, 347–356 (1998).

    Article  Google Scholar 

  5. Reddi, B.A. & Carpenter, R.H. The influence of urgency on decision time. Nat. Neurosci. 3, 827–830 (2000).

    Article  CAS  Google Scholar 

  6. Usher, M. & McClelland, J.L. The time course of perceptual choice: the leaky, competing accumulator model. Psychol. Rev. 108, 550–592 (2001).

    Article  CAS  Google Scholar 

  7. Aminoff, M.J. & Goodin, D.S. The decision to make a movement: neurophysiological insights. Can. J. Neurol. Sci. 24, 181–190 (1997).

    Article  CAS  Google Scholar 

  8. Schall, J.D. & Bichot, N.P. Neural correlates of visual and motor decision processes. Curr. Opin. Neurobiol. 8, 211–217 (1998).

    Article  CAS  Google Scholar 

  9. Glimcher, P.W. Making choices: the neurophysiology of visual-saccadic decision making. Trends Neurosci. 24, 654–659 (2001).

    Article  CAS  Google Scholar 

  10. Romo, R. & Salinas, E. Touch and go: decision-making mechanisms in somatosensation. Annu. Rev. Neurosci. 24, 107–137 (2001).

    Article  CAS  Google Scholar 

  11. Platt, M.L. Neural correlates of decisions. Curr. Opin. Neurobiol. 12, 141–148 (2002).

    Article  CAS  Google Scholar 

  12. Romo, R. & Salinas, E. Flutter discrimination: neural codes, perception, memory and decision making. Nat. Rev. Neurosci. 4, 203–218 (2003).

    Article  CAS  Google Scholar 

  13. Newsome, W.T., Britten, K.H. & Movshon, J.A. Neural correlates of a perceptual decision. Nature 341, 52–54 (1989).

    Article  CAS  Google Scholar 

  14. Britten, K.H., Newsome, W.T., Shadlen, M.N., Celebrini, S. & Movshon, J.A. A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis. Neurosci. 13, 87–100 (1996).

    Article  CAS  Google Scholar 

  15. Shadlen, M.N. & Newsome, W.T. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916–1936 (2001).

    Article  CAS  Google Scholar 

  16. Gold, J.I. & Shadlen, M.N. Representation of a perceptual decision in developing oculomotor commands. Nature 404, 390–394 (2000).

    Article  CAS  Google Scholar 

  17. Gold, J.I. & Shadlen, M.N. The influence of behavioral context on the representation of a perceptual decision in developing oculomotor commands. J. Neurosci. 23, 632–651 (2003).

    Article  CAS  Google Scholar 

  18. Roitman, J.D. & Shadlen, M.N. Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 22, 9475–9489 (2002).

    Article  CAS  Google Scholar 

  19. Salzman, C.D., Murasugi, C.M., Britten, K.H. & Newsome, W.T. Microstimulation in visual area MT: effects on direction discrimination performance. J. Neurosci. 12, 2331–2355 (1992).

    Article  CAS  Google Scholar 

  20. Newsome, W.T. & Paré, E.B. A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J. Neurosci. 8, 2201–2211 (1988).

    Article  CAS  Google Scholar 

  21. Rudolph, K. & Pasternak, T. Transient and permanent deficits in motion perception after lesions of cortical areas MT and MST in the macaque monkey. Cereb. Cortex 9, 90–100 (1999).

    Article  CAS  Google Scholar 

  22. Albright, T.D. Cortical processing of visual motion. Rev. Oculomot. Res. 5, 177–201 (1993).

    CAS  PubMed  Google Scholar 

  23. Cook, E.P. & Maunsell, J.H. Dynamics of neuronal responses in macaque MT and VIP during motion detection. Nat. Neurosci. 5, 985–994 (2002).

    Article  CAS  Google Scholar 

  24. Celebrini, S. & Newsome, W.T. Microstimulation of extrastriate area MST influences performance on a direction discrimination task. J. Neurophysiol. 73, 437–448 (1995).

    Article  CAS  Google Scholar 

  25. Laming, D.R.J. Subjective probability in choice-reaction experiments. J. Math. Psych. 6, 81–120 (1969).

    Article  Google Scholar 

  26. Carpenter, R.H. & Williams, M.L. Neural computation of log likelihood in control of saccadic eye movements. Nature 377, 59–62 (1995).

    Article  CAS  Google Scholar 

  27. Hanes, D.P. & Schall, J.D. Neural control of voluntary movement initiation. Science 274, 427–430 (1996).

    Article  CAS  Google Scholar 

  28. Heeger, D.J., Boynton, G.M., Demb, J.B., Seidemann, S. & Newsome, W.T. Motion opponency in visual cortex. J. Neurosci. 19, 7162–7174 (1999).

    Article  CAS  Google Scholar 

  29. Qian, N., Andersen, R.A. & Adelson, E.H. Transparent motion perception as detection of unbalanced motion signals. I. Psychophysics. J. Neurosci. 14, 7357–7366 (1994).

    Article  CAS  Google Scholar 

  30. Qian, N. & Andersen, R.A. Transparent motion perception as detection of unbalanced motion signals. II. Physiology. J. Neurosci. 14, 7367–7380 (1994).

    Article  CAS  Google Scholar 

  31. Britten, K.H., Shadlen, M.N., Newsome, W.T. & Movshon, J.A. Responses of neurons in macaque MT to stochastic motion signals. Vis. Neurosci. 10, 1157–1169 (1993).

    Article  CAS  Google Scholar 

  32. Pantle, A. Motion aftereffect magnitude as a measure of the spatiotemporal response properties of direction-sensitive analyzers. Vision Res. 14, 1229–1236 (1974).

    Article  CAS  Google Scholar 

  33. Levinson, E. & Sekuler, R. The independence of channels in human vision selective for direction of movement. J. Physiol. 250, 347–366 (1975).

    Article  CAS  Google Scholar 

  34. Adelson, E.H. & Bergen, J.R. Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A2, 284–299 (1985).

    Article  Google Scholar 

  35. Snowden, R.J., Treue, S., Erickson, R.G. & Andersen, R.A. The response of area MT and V1 neurons to transparent motion. J. Neurosci. 11, 2768–2785 (1991).

    Article  CAS  Google Scholar 

  36. Van Wezel, R.J.A. & Britten, K.H. Motion adaptation in area MT. J. Neurophysiol. 88, 3469–3476 (2002).

    Article  Google Scholar 

  37. Churchland, M.M. & Lisberger, S.G. Shifts in the population response in the middle temporal visual area parallel perceptual and motor illusions produced by apparent motion. J. Neurosci. 21, 9387–9402 (2001).

    Article  CAS  Google Scholar 

  38. Horwitz, G.D. & Newsome, W.T. Target selection for saccadic eye movements: prelude activity in the superior colliculus during a direction-discrimination task. J. Neurophysiol. 86, 2543–2558 (2001).

    Article  CAS  Google Scholar 

  39. Kim, J.N. & Shadlen, M.N. Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nat. Neurosci. 2, 176–185 (1999).

    Article  Google Scholar 

  40. Good, I.J. Studies in the history of probability and statistics: A.M. Turing's statistical work in World War II. Biometrika 66, 393–396 (1979).

    Article  Google Scholar 

  41. Gold, J.I. & Shadlen, M.N. Neural computations that underlie decisions about sensory stimuli. Trends Cogn. Sci. 5, 10–16 (2001).

    Article  Google Scholar 

  42. Wald, A. Sequential Analysis (Wiley, New York, 1947).

    Google Scholar 

  43. Van Essen, D.C. et al. An integrated software suite for surface-based analyses of cerebral cortex. J. Am. Med. Inform. Assoc. 8, 510–511 (2001).

    Article  Google Scholar 

  44. Van Essen, D.C. Windows on the brain: the emerging role of atlases and databases in neuroscience. Curr. Opin. Neurobiol. 12, 574–579 (2002).

    Article  CAS  Google Scholar 

  45. Brainard, D.H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).

    Article  CAS  Google Scholar 

  46. Pelli, D.G. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat. Vis. 10, 437–442 (1997).

    Article  CAS  Google Scholar 

  47. Meeker, W.Q. & Escobar, L.A. Statistical Methods for Reliability Data (John Wiley & Sons, New York, 1998).

    Google Scholar 

  48. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. Numerical Recipes in C 666–670 (Cambridge University Press, Cambridge, 1992).

    Google Scholar 

  49. Green, D.M. & Swets, J.A. Signal Detection Theory and Psychophysics (John Wiley & Sons, New York, 1966).

    Google Scholar 

Download references

Acknowledgements

This study was supported by the ARCS Foundation, the Deutsche Forschungsgemeinschaft (DI 819/1-1), the Howard Hughes Medical Institute, the National Center for Research Resources (RR00166), the National Eye Institute (EY11378) and Poncin. We thank L. Jasinski and M. Mihali for technical assistance and J. Gold, A. Huk and J. Palmer for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael N Shadlen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ditterich, J., Mazurek, M. & Shadlen, M. Microstimulation of visual cortex affects the speed of perceptual decisions. Nat Neurosci 6, 891–898 (2003). https://doi.org/10.1038/nn1094

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1094

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing