Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Calcium regulates exocytosis at the level of single vesicles

Abstract

Ca2+ microdomains that form during the opening of voltage-gated Ca2+ channels have been implicated in regulating the kinetics of hormone and transmitter release. Direct assessment of the interaction between a single Ca2+ microdomain and a single secretory vesicle has been impossible because of technical limitations. Using evanescent field imaging of near-membrane micromolar Ca2+ concentration ([Ca2+]) and fluorescently labeled vesicles, we have observed exocytosis of individual chromaffin dense-core vesicles that was triggered by Ca2+ microdomains. Ca2+ microdomains selectively triggered the release of vesicles that were docked within 300 nm. Not all vesicles exposed to a Ca2+ microdomain were released, indicating that some vesicles are docked but are not ready for release. In addition to its established role as a trigger for release, elevated near-membrane [Ca2+] reduced the distance between docked vesicles and Ca2+ entry sites. Our results suggest a new mechanism for stimulation-dependent facilitation of exocytosis, whereby vesicles are moved closer to Ca2+ entry sites, thereby increasing a Ca2+ microdomain's efficacy to trigger vesicle fusion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dual-color evanescent field imaging of individual vesicles and Ca2+ microdomains.
Figure 2: Ca2+ microdomains require voltage-gated Ca2+ influx.
Figure 3: A nearby Ca2+ microdomain triggers release.
Figure 4: Factors determining the efficacy of a Ca2+ microdomain for triggering release.
Figure 5: Stimulation increases the degree of colocalization.
Figure 6: Vesicles are recruited during episodes of high near-membrane [Ca2+].

Similar content being viewed by others

References

  1. Augustine, G.J. & Neher, E. Calcium requirements for secretion in bovine chromaffin cells. J. Physiol. 450, 247–271 (1992).

    Article  CAS  Google Scholar 

  2. Monck, J.R., Robinson, I.M., Escobar, A.L., Vergara, J.L. & Fernandez, J.M. Pulsed laser Imaging of rapid Ca2+ gradients in excitable cells. Biophys. J. 67, 505–514 (1994).

    Article  CAS  Google Scholar 

  3. Melamed-Book, N., Kachalsky, S.G., Kaiserman, I. & Rhamimoff, R. Neuronal calcium sparks and intracellular calcium “noise”. Proc. Natl. Acad. Sci. USA 96, 15217–15221 (1999).

    Article  CAS  Google Scholar 

  4. Chad, J.E. & Eckert, R. Calcium domains associated with individual channels can account for anomalous voltage relations of Ca-dependent responses. Biophys. J. 45, 993–999 (1984).

    Article  CAS  Google Scholar 

  5. Simon, S.M. & Llinás, R.R. Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. Biophys. J. 48, 485–498 (1985).

    Article  CAS  Google Scholar 

  6. Sala, F. & Hernández-Cruz, A. Calcium diffusion modeling in a spherical neuron: relevance of buffering properties. Biophys. J. 57, 312–324 (1990).

    Article  Google Scholar 

  7. Nowycky, M.C. & Pinter, M.J. Time courses of calcium and calcium-bound buffers following calcium influx in a model cell. Biophys. J. 64, 77–91 (1993).

    Article  CAS  Google Scholar 

  8. Naraghi, M. & Neher, E. Linearized buffered Ca2+ diffusion in microdomains and Its implications for calculation of [Ca2+] at the mouth of a calcium channel. J. Neurosci. 17, 6961–6973 (1997).

    Article  CAS  Google Scholar 

  9. Augustine, G.J. & Neher, E. Neuronal Ca2+ signalling takes the local route. Curr. Opin. Neurobiol. 2, 302–307 (1992).

    Article  CAS  Google Scholar 

  10. Neher, E. Vesicle pools and Ca2+ microdomains: New tools for understanding their roles in neurotransmitter release. Neuron 20, 389–399 (1998).

    Article  CAS  Google Scholar 

  11. Llinás, R., Sugimori, M. & Silver, R.B. Microdomains of high calcium concentration in a presynaptic terminal. Science 256, 677–679 (1992).

    Article  Google Scholar 

  12. Parnas, I. & Parnas, H. Different mechanisms control the amount and time course of neurotransmitter release. J. Physiol. (Lond.) 517, 629 (1999).

    Article  CAS  Google Scholar 

  13. Horrigan, F.T. & Bookman, R.J. Releasable pools and the kinetics of exocytosis in chromaffin cells. Neuron 13, 1119–1129 (1994).

    Article  CAS  Google Scholar 

  14. Barg, S. et al. Fast exocytosis with few Ca2+ channels in insulin-secreting mouse pancreatic beta cells. Biophys. J. 81, 3308–3323 (2001).

    Article  CAS  Google Scholar 

  15. Khanna, B., Tabares, L., Alvarez de Toledo, G. & Lindau, M. Action potentials and quantal release in chromaffin cells. Biophys. J. 82, 10–11 (2002).

    Google Scholar 

  16. Etter, E.F., Kuhn, M.A. & Fay, F.S. Detection of changes in near-membrane Ca2+ concentration using a novel membrane-associated Ca2+ indicator. J. Biol. Chem. 269, 10141–10149 (1994).

    CAS  PubMed  Google Scholar 

  17. Tucker, T. & Tettiplace, R. Confocal imaging of calcium microdomains and calcium extrusion in turtle hair cells. Neuron 15, 1323–1335 (1995).

    Article  CAS  Google Scholar 

  18. Omann, G.M. & Axelrod, D. Membrane-proximal calicum transients in stimulated neutrophils detected by total internal reflection fluorescence. Biophys. J. 71, 2885–2891 (1996).

    Article  CAS  Google Scholar 

  19. Cleeman, L., DiMassa, G. & Morad, M. Ca2+ sparks within 200 nm of the sarcolemma of rat ventricular cells: evidence from total internal reflection fluorescence microscopy. Advan. Exp. Med. Biol. 430, 57–65 (1997).

    Article  Google Scholar 

  20. Zenisek, D., Davila, V., Wan, L. & Almers, W. Imaging calcium entry sites and ribbon structures in two presynaptic cells. J. Neurosci. 23, 2538–2548 (2003).

    Article  CAS  Google Scholar 

  21. Chow, R.H., Klingauf, J. & Neher, E. Time course of Ca2+ concentration triggering exocytosis in neuroendocrine cells. Proc. Natl. Acad. Sci. USA 91, 12765–12769 (1994).

    Article  CAS  Google Scholar 

  22. Steyer, J.A. & Almers, W. Tracking single secretory granules in live chromaffin cells by evanescent-field fluorescence microscopy. Biophys. J. 76, 2262–2271 (1999).

    Article  CAS  Google Scholar 

  23. Oheim, M. & Stühmer, W. Tracking individual granules through the actin cortex. Eur. Biophys. J. 29, 67–89 (2000).

    Article  CAS  Google Scholar 

  24. Johns, L.M., Levitan, E.S., Shelden, E.A., Holz, R.W. & Axelrod, D. Restriction of secretory granule motion near the plasma membrane of chromaffin cells. J. Cell Biol. 153, 177–190 (2001).

    Article  CAS  Google Scholar 

  25. Klingauf, J. & Neher, E. Modeling buffered Ca2+ diffusion near the membrane: Implications for secretion in neuroendocrine cells. Biophys. J. 72, 674–690 (1997).

    Article  CAS  Google Scholar 

  26. Adler, E.M., Augustine, G.J., Duffy, S.N. & Charlton, M.P. Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse. J. Neurosci. 11, 1496–1507 (1991).

    Article  CAS  Google Scholar 

  27. Roberts, W.M. Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells. J. Neurosci. 14, 3246–3262 (1994).

    Article  CAS  Google Scholar 

  28. Gosh, R.N. & Webb, W.W. Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. Biophys. J. 66, 1301–1318 (1994).

    Article  Google Scholar 

  29. Augustine, G.J. How does calcium trigger neurotransmitter release? Curr. Opin. Neurobiol. 11, 320–326 (2001).

    Article  CAS  Google Scholar 

  30. Rettig, J. & Neher, E. Emerging roles of presynaptic proteins in Ca2+ triggered exocytosis. Science 298, 781–785 (2002).

    Article  CAS  Google Scholar 

  31. Atlas, D. Functional and physical coupling of voltage-sensitive calcium channels with exocytotic proteins: ramifications for the secretion mechanism. J. Neurochem. 77, 972–985 (2001).

    Article  CAS  Google Scholar 

  32. Schroeder, T.J., Jankowski, J.A., Senyshyn, J. & Holz, R.W. Zones of exocytotic release on bovine adrenal medullary cells in culture. J. Biol. Chem. 269, 17215–17220 (1994).

    CAS  PubMed  Google Scholar 

  33. Robinson, I.M., Finnegan, J.M., Monck, J.R., Wightman, R.M. & Fernandez, J.M. Colocalization of calcium entry and exocytotic release sites in adrenal chromaffin cells. Proc. Natl. Acad. Sci. USA 92, 2474–2478 (1995).

    Article  CAS  Google Scholar 

  34. Wick, P.F., Trenkle, J.M. & Holz, R.W. Punctate appearance of dopamine-beta-hydroxylase on the chromaffin cell-surface reflects the fusion of individual chromaffin granules upon exocytosis. J. Neurosci. 80, 847–860 (1997).

    Article  CAS  Google Scholar 

  35. Oheim, M., Loerke, D., Stühmer, W. & Chow, R.H. Multiple stimulation-dependent processes regulate the size of the releasable pool of vesicles. Eur. Biophys. J. 28, 91–101 (1999).

    Article  CAS  Google Scholar 

  36. Voets, T., Neher, E. & Moser, T. Mechanisms underlying phasic and sustained secretion in chromaffin cells from mouse adrenal slices. Neuron 23, 607–615 (1999).

    Article  CAS  Google Scholar 

  37. Bittner, M.A. & Holz, R.W. Kinetic analysis of secretion from permeabilized adrenal chromaffin cells reveals distinct components. J. Biol. Chem. 267, 16219–16225 (1992).

    CAS  PubMed  Google Scholar 

  38. Rüden, L.v. & Neher, E. A Ca-dependent early step in the release of catecholamines from adrenal chromaffin cells. Science 262, 1061–1065 (1993).

    Article  Google Scholar 

  39. Smith, C., Moser, T., Xu, T. & Neher, E. Cytosolic Ca2+ acts by two separate pathways to modulate the supply of release-competent vesicles in chromaffin cells. Neuron 20, 1243–1253 (1998).

    Article  CAS  Google Scholar 

  40. Stevens, C.F. & Wesseling, J.F. Activity-dependent modulation of the rate at which synaptic vesicles become available to undergo exocytosis. Neuron 21, 415–424 (1998).

    Article  CAS  Google Scholar 

  41. Gomis, A., Burrone, J. & Lagnodo, L. Two actions of calcium regulate the supply of releasable vesicles at the ribbon synapse of retinal bipolar cells. J. Neurosci. 19, 6309–6317 (1999).

    Article  CAS  Google Scholar 

  42. Voets, T. Dissection of three Ca2+-dependent steps leading to secretion in chromaffin cells from mouse adrenal slices. Neuron 28, 537–545 (2000).

    Article  CAS  Google Scholar 

  43. Ashery, U. et al. Munc13-1 acts as a priming factor for large dense-core vesicles in bovine chromaffin cells. EMBO J. 19, 3586–3596 (2000).

    Article  CAS  Google Scholar 

  44. Lev-Ram. Calcium transients in in cerebellar Prukinje neurones evoked by intracellular stimulation. J. Neurophysiol. 68, 1167–1177 (1992).

    Article  CAS  Google Scholar 

  45. Cheng, H. et al. Amplitude distribution of calcium sparks in confocal images: theory and studies with an automatic detection method. Biophys. J. 76, 606–617 (1999).

    Article  CAS  Google Scholar 

  46. Zenisek, D., Steyer, J.A., Feldman, M.E. & Almers, W. A membrane marker leaves synaptic vesicles in milliseconds after exocytosis in retinal bipolar cells. Neuron 35, 1085–1097 (2002).

    Article  CAS  Google Scholar 

  47. Wightman, R.M. et al. Temporarily resolved catecholamine spikes correspond to single vesicle release from individual chromaffin granules. Proc. Natl. Acad. Sci. USA 88, 10754–10758 (1991).

    Article  CAS  Google Scholar 

  48. Chow, R.H., Rüden, L.v. & Neher, E. Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature 356, 60–63 (1992).

    Article  CAS  Google Scholar 

  49. Schulte, A. & Chow, R.H. Cylindrically etched carbon-fiber microelectrodes for low-noise amperometric recording. Anal. Chem. 70, 985–990 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. B. Sørensen for chromaffin cells and carbon-fiber electrodes, B. Barbour, K. Delaney, E. Neher and members of our labs for comments on the manuscript. Supported by the Ministère de la Recherche (ACI 'young investigator group' 5242 to M.O.), the Max-Planck Society and SFB 406 (to W.S. and T.M.) and the Alexander-von-Humboldt Foundation (to U.B. and M.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Oheim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becherer, U., Moser, T., Stühmer, W. et al. Calcium regulates exocytosis at the level of single vesicles. Nat Neurosci 6, 846–853 (2003). https://doi.org/10.1038/nn1087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1087

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing