Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Achieving neuronal patterning by repression

The diffusible signal Sonic Hedgehog (Shh) controls cell type specification in the ventral spinal cord. Litingtung and Chiang now show that some defects due to the lack of Shh are rescued by deleting the transcription factor Gli3, suggesting that Shh works by inactivating Gli3.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The position and identity of six cell types in the ventral spinal cord of wild-type (WT) and mutant embryos may be determined by a homeodomain protein code under Shh and retinoid regulation (modified from ref. 2).
Figure 2: Hypothetical consequences for homeodomain protein expression and the resulting neuronal subtypes in wild-type and different mutant mice.

References

  1. Lee, K. J. & Jessell, T. M. Annu. Rev. Neurosci. 22, 261–294 (1999).

    Article  CAS  Google Scholar 

  2. Briscoe, J., Pierani, A., Jessell, T. M. & Ericson, J. Cell 101, 435–445 ( 2000).

    Article  CAS  Google Scholar 

  3. Chiang, C. et al. Nature 382, 407–413 (1996).

    Article  Google Scholar 

  4. Litingtung, Y. & Chiang, C. Nat. Neurosci. 3, 979–985 (2000).

    Article  CAS  Google Scholar 

  5. Pierani, A., Brenner-Morton, S., Chiang, C. & Jessell, T. M. Cell 97, 903–915 ( 1999).

    Article  CAS  Google Scholar 

  6. Murone, M., Rosenthal, A. & de Sauvage, F. J. Exp. Cell Res. 253, 25– 33 (1999).

    Article  CAS  Google Scholar 

  7. Ruiz i Altaba, A. Development 126, 3205–3216 (1999).

    PubMed  Google Scholar 

  8. Wang, B., Fallon, J. F. & Beachy, P. A. Cell 100, 423– 434 (2000).

    Article  CAS  Google Scholar 

  9. von Mering, C. & Basler, K. Curr. Biol. 9, 1319–1322 (1999).

    Article  CAS  Google Scholar 

  10. Matise, M., Epstein, D. J., Park, H. L., Platt, K. A. & Joyner, A. L. Development 125, 2759–2770 (1998).

    CAS  PubMed  Google Scholar 

  11. Ding, Q. et al. Development 125, 2533– 2543 (1998).

    CAS  PubMed  Google Scholar 

  12. Park, H. L. et al. Development 127, 1593– 1605 (2000).

    CAS  PubMed  Google Scholar 

  13. Ericson, J. et al. Cell 90, 169–180 (1997).

    Article  CAS  Google Scholar 

  14. Methot, N. & Basler, K. Cell 96, 819 –831 (1999).

    Article  CAS  Google Scholar 

  15. Sasaki, H. & Hogan, B. L. Cell 76, 103–115 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stone, D., Rosenthal, A. Achieving neuronal patterning by repression. Nat Neurosci 3, 967–969 (2000). https://doi.org/10.1038/79894

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/79894

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing