Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A method for rapid gain-of-function studies in the mouse embryonic nervoussystem

Abstract

We used ultrasound image-guided injections of high-titer retroviral vectorsto obtain widespread introduction of genes into the mouse nervous system in utero as early as embryonic day 8.5 (E8.5). The vectors used includedinternal promoters that substantially improved proviral gene expression inthe ventricular zone of the brain. To demonstrate the utility of this system,we extended our previous work in vitro by infecting the telencephalon in vivo as early as E8.5 with a virus expressing Sonic Hedgehog. Infectedembryos showed gross morphological brain defects, as well as ectopic expressionof ventral telencephalic markers characteristic of either the medial or lateralganglionic eminences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representations of the retroviral constructs.
Figure 2: P21 phenotype of cells infected with PLAP-expressing viruses at E9.5.
Figure 3: Internal promoters improved vector expression within the ventricularzone.
Figure 4: Comparison of neuron distribution in samples infected with CLIA(G)and CLC(G).
Figure 5: Injection of retroviral stocks at E8.5 resulted in widespread infection.
Figure 6: Morphological defects in embryos infected with a Shh-expressing virus(CLES).
Figure 7: Dorsolateral Shh expression resulted in ectopic expression of ventralmarkers.

Similar content being viewed by others

References

  1. Yan, Y. L., Jowett, T. & Postlethwait, J. H. Ectopic expression of hoxb2 after retinoic acid treatmentor mRNA injection: disruption of hindbrain and craniofacial morphogenesisin zebrafish embryos. Dev. Dyn. 213, 370–385 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Gaiano, N. & Hopkins, N. Introducing genes into zebrafish. Biochim. Biophys. Acta. 1288, O11–14 (1996).

    PubMed  Google Scholar 

  3. Slack, J. M. Inducing factors in Xenopus early embryos. Curr. Biol. 4, 116–126 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Bell, E. J. & Brickell, P. M. Replication-competent retroviralvectors for expressing genes in avian cells in vitro and in vivo. Mol. Biotechnol. 7, 289–298 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Muramatsu, T., Mizutani, Y., Ohmori, Y. & Okumura, J. Comparison ofthree nonviral transfection methods for foreign gene expression in early chickenembryos in ovo. Biochem. Biophys. Res. Commun. 230, 376–380 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Davidson, B. L., Allen, E. D., Kozarsky, K.F., Wilson, J. M. & Roessler, B. J. A model system for in vivo genetransfer into the central nervous system using an adenoviral vector. Nat. Genet. 3, 219–223 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Moriyoshi, K., Richards, L. J., Akazawa, C., O'Leary, D. D. & Nakanishi, S. Labeling neural cells using adenoviralgene transfer of membrane-targeted GFP. Neuron 16, 255–260 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Price, J., Turner, D. & Cepko, C. Lineage analysis in the vertebrate nervous system by retrovirus-mediatedgene transfer. Proc. Natl. Acad. Sci. USA 84, 156–160 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sanes, J. R., Rubenstein, J. L. & Nicolas, J. F. Use of a recombinant retrovirus to study post-implantationcell lineage in mouse embryos. EMBO J. 5, 3133–3142 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roe, T., Reynolds, T. C., Yu, G. & Brown, P. O. Integration ofmurine leukemia virus DNA depends on mitosis. EMBO J. 12, 2099–2108 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cepko, C. L., Fields-Berry, S., Ryder, E., Austin, C. & Golden, J. Lineage analysis using retroviralvectors. Curr. Top. Dev. Biol. 36, 51–74 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Turner, D. L. & Cepko, C. L. A common progenitor for neuronsand glia persists in rat retina late in development. Nature 328, 131–136 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Walsh, C. & Cepko, C. L. Widespread dispersion of neuronalclones across functional regions of the cerebral cortex. Science 255, 434–440 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Furukawa, T., Morrow, E. M. & Cepko, C. L. Crx, a novel otx-like homeobox gene, shows photoreceptor-specificexpression and regulates photoreceptor differentiation. Cell 91, 531–541 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Ishibashi, M. et al. Persistent expression of helix-loop-helix factor HES-1 preventsmammalian neural differentiation in the central nervous system. EMBO J. 13, 1799–1805 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Burrows, R. C., Wancio, D., Levitt, P. & Lillien, L. Response diversityand the timing of progenitor cell maturation are regulated by developmentalchanges in EGFR expression in the cortex. Neuron 19, 251–267 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Bao, Z. Z. & Cepko, C. L. The expression and function ofNotch pathway genes in the developing rat eye. J. Neurosci. 17, 1425–1434 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Olsson, M., Campbell, K. & Turnbull, D. H. Specification of mouse telencephalic and mid-hindbrainprogenitors following heterotopic ultrasound-guided embryonic transplantation. Neuron 19, 761–772(1997).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, A., Joyner, A. L. & Turnbull, D. H. Alteration of limb and brain patterning in earlymouse embryos by ultrasound-guided injection of Shh-expressing cells. Mech. Dev. 75, 107–115 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Kohtz, J. D., Baker, D. P., Corte, G. & Fishell, G. Regionalizationwithin the mammalian telencephalon is mediated by changes in responsivenessto Sonic Hedgehog. Development 125, 5079–5089 (1998).

    CAS  PubMed  Google Scholar 

  21. Naviaux, R. K., Costanzi, E., Haas, M. & Verma, I. M. The pCL vectorsystem: rapid production of helper-free, high-titer, recombinant retroviruses. J. Virol. 70, 5701–5705 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yee, J. K., Friedmann, T. & Burns, J. C. Generation of high-titer pseudotyped retroviral vectorswith very broad host range. Methods Cell Biol. 43, 99–112 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Eidelman, O., Schlegel, R., Tralka, T. S. & Blumenthal, R. pH-dependent fusion induced by vesicular stomatitis virus glycoprotein reconstitutedinto phospholipid vesicles. J. Biol. Chem. 259, 4622–4628 (1984).

    CAS  PubMed  Google Scholar 

  24. Albritton, L. M., Tseng, L., Scadden, D. & Cunningham, J. M. A putativemurine ecotropic retrovirus receptor gene encodes a multiple membrane-spanningprotein and confers susceptibility to virus infection. Cell 57, 659–666 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Lange, C. & Blankenstein, T. Loss of retroviral gene expressionin bone marrow reconstituted mice correlates with down-regulation of geneexpression in long-term culture initiating cells. Gene Ther. 4, 303–308 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Gorman, C. M., Rigby, P. W. & Lane, D. P. Negative regulation of viral enhancers in undifferentiatedembryonic stem cells. Cell 42, 519–526 (1985).

    Article  CAS  PubMed  Google Scholar 

  27. Kempler, G., Freitag, B., Berwin, B., Nanassy, O. & Barklis, E. Characterization of the Moloney murine leukemia virusstem cell-specific repressor binding site. Virology 193, 690–699 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Johansson, C. B. et al. Identification of a neural stem cell in the adult mammaliancentral nervous system. Cell 96, 25–34 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Temple, S. & Alvarez-Buylla, A. Stem cells in the adult mammaliancentral nervous system. Curr. Opin. Neurobiol. 9, 135–141 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Reynolds, B.A. & Weiss, S. Clonal and populationanalyses demonstrate that an EGF-responsive mammalian embryonic CNS precursoris a stem cell. Dev. Biol. 175, 1–13 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Halliday, A. L. & Cepko, C. L. Generation andmigration of cells in the developing striatum. Neuron 9, 15–26 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Takahashi, T., Nowakowski, R. S. & Caviness, V. S. Jr. The leaving or Q fraction of themurine cerebral proliferative epithelium: a general model of neocortical neuronogenesis. J. Neurosci. 16, 6183–6196 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Johnson, A. D. & Krieg, P. A. pXeX, a vectorfor efficient expression of cloned sequences in Xenopus embryos. Gene 147, 223–226 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Sawicki, J. A., Morris, R. J., Monks, B., Sakai, K. & Miyazaki, J. A composite CMV-IE enhancer/beta-actin promoter is ubiquitouslyexpressed in mouse cutaneous epithelium. Exp. Cell Res. 244, 367–369 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection for high-expression transfectantswith a novel eukaryotic vector. Gene 108, 193–199 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Tan, S. S. & Breen, S. Radial mosaicism and tangential celldispersion both contribute to mouse neocortical development. Nature 362, 638–640 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Rakic, P. Radial versus tangential migration of neuronal clones in the developing cerebralcortex. Proc. Natl. Acad. Sci. USA 92, 11323–11327 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Echelard, Y. et al. Sonic hedgehog, a member of a family of putative signalingmolecules, is implicated in the regulation of CNS polarity. Cell 75, 1417–1430 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Ericson, J. et al. Sonic hedgehog induces the differentiation of ventral forebrainneurons: a common signal for ventral patterning within the neural tube. Cell 81, 747–756 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Roelink, H. et al. Floor plate and motor neuron induction by vhh-1, a vertebratehomolog of hedgehog expressed by the notochord. Cell 76, 761–775 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Bulfone, A. et al. The mouse Dlx-2 (Tes-1) gene is expressed in spatially restricteddomains of the forebrain, face and limbs in midgestation mouse embryos. Mech. Dev. 40, 129–140 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Lazzaro, D., Price, M., de Felice, M. & Di Lauro, R. The transcriptionfactor TTF-1 is expressed at the onset of thyroid and lung morphogenesis andin restricted regions of the foetal brain. Development 113, 1093–1104 (1991).

    CAS  PubMed  Google Scholar 

  43. Shimamura, K. & Rubenstein, J. L. Inductive interactions directearly regionalization of the mouse forebrain. Development 124, 2709–2718 (1997).

    CAS  PubMed  Google Scholar 

  44. Toresson, H., Mata de Urquiza, A., Fagerstrom, C., Perlmann, T. & Campbell, K. Retinoids are produced by gliain the lateral ganglionic eminence and regulate striatal neuron differentiation. Development 126, 1317–1326 (1999).

    CAS  PubMed  Google Scholar 

  45. Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking Sonichedgehog gene function. Nature 383, 407–413 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Ruiz i Altaba, A. Catching a Gli-mpse of Hedgehog. Cell 90, 193–196 (1997).

    Article  PubMed  Google Scholar 

  47. Schaeren-Wiemers, N. & Gerfin-Moser, A. A singleprotocol to detect transcripts of various types and expression levels in neuraltissue and cultured cells: in situ hybridization using digoxigenin-labelledcRNA probes. Histochemistry 100, 431–440 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Mullen, R. J., Buck, C. R. & Smith, A. M. NeuN, a neuronal specific nuclear protein in vertebrates. Development 116, 201–211 (1992).

    CAS  PubMed  Google Scholar 

  49. Sprinkle, T. J. 2',3′-cyclic nucleotide 3′-phosphodiesterase, an oligodendrocyte-Schwanncell and myelin-associated enzyme of the nervous system. Crit.Rev. Neurobiol. 4, 235–301 (1989).

    CAS  PubMed  Google Scholar 

  50. Bignami, A. & Dahl, D. Astrocyte-specific protein and neuroglialdifferentiation. An immunofluorescence study with antibodies to the glialfibrillary acidic protein. J. Comp. Neurol. 153, 27–38 (1974).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Rusty Lansford for bringing the CA regulatory element to our attentionand Alex Langston and Robin Kimmel for input at the start of this work. Wealso thank Maria McCarthy and Connie Cepko for discussions, Michelle Starz-Gaianofor reading the manuscript, Ulf Eriksson for providing the anti-CRBP antibodyand K. Mahon for the dlx2 in situ probe. This work was supported by NIH grantsNS32993 (G.F.), NS38461 (D.H.T.) and HL62334 (D.H.T.). Additional supportwas provided by March of Dimes Grant 6-FY99-634 (G.F.). N.G. is supportedby a postdoctoral fellowship from the American Cancer Society (PF4473).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel H. Turnbull or Gord Fishell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaiano, N., Kohtz, J., Turnbull, D. et al. A method for rapid gain-of-function studies in the mouse embryonic nervoussystem. Nat Neurosci 2, 812–819 (1999). https://doi.org/10.1038/12186

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12186

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing