Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synaptic activation of AMPA receptors inhibits GABA release from cerebellar interneurons

Abstract

A single neurotransmitter elicits diverse physiological responses through activation of multiple receptor subtypes and/or heterosynaptic interactions involving distinct synaptic targets. We found that a typical excitatory transmitter released from the climbing fiber (CF) in the cerebellar cortex not only excited Purkinje cells directly but also presynaptically inhibited GABAergic transmission from interneurons converging on the same Purkinje cells. Both homosynaptic and heterosynaptic actions of the CF transmitter (possibly glutamate) were mediated by activation of AMPA receptors. Dual AMPA receptor-mediated functions of excitation and disinhibition may ensure transmission of cerebellar CF signals controlling sensorimotor coordination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Repetitive activation of the CF inhibits GABAergic transmission on to rat cerebellar PCs.
Figure 2: Stimulus frequency, intensity and number dependency, and time course of CF stimulation-induced inhibition of GABAergic IPSCs.
Figure 3: The amplitude but not the frequency of GABA receptor-mediated sIPSC decreased after the CF repetitive stimulation.
Figure 4: Presynaptic nature of the CF-induced inhibition of cerebellar GABAergic transmission.
Figure 5: Inhibitory effect of CF conditioning stimulation on BC action current-triggered IPSCs determined by double recordings from a BC–PC pair.
Figure 6: Effects of ionotropic and metabotropic glutamate receptor antagonists and a modulator of AMPA receptors on the CF-induced inhibition of GABAA IPSCs.
Figure 7: Pharmacology for testing possible involvement of mGluR2/3 and intracellular messengers in the CF-induced inhibition of GABAergic transmission.
Figure 8: Effects of AMPA, an ionotropic GluR agonist, on the GABAA IPSC and specific enhancement of the AMPA effect by CYZ, an inhibitor of AMPA receptor desensitization.

Similar content being viewed by others

References

  1. Byrne, J. H. & Kandel, E. R. Presynaptic facilitation revisited: state and time dependence. J. Neurosci. 16, 425–435 (1996).

    Article  CAS  Google Scholar 

  2. Dixon, D. & Atwood, H. L. Conjoint action of phosphatidylinositol and adenylate cyclase systems in serotonin-induced facilitation at the crayfish neuromuscular junction. J. Neurophysiol. 62, 1251–1259 (1989).

    Article  CAS  Google Scholar 

  3. Goy, M. F. & Kravitz, E. A. Cyclic AMP only partially mediates the actions of serotonin at lobster neuromuscular junctions. J. Neurosci. 9, 369–379 (1989).

    Article  CAS  Google Scholar 

  4. Huang, Y.-Y. & Kandel, E. R. Modulation of both the early and the late phase of mossy fiber LTP by the activation of β-adrenergic receptors. Neuron 16, 611–617 (1996).

    Article  CAS  Google Scholar 

  5. Mitoma, H. & Konishi, S. Long-lasting facilitation of inhibitory transmission by monoaminergic and cAMP-dependent mechanism in rat cerebellar GABAergic synapses. Neurosci. Lett. 217, 141–144 (1996).

    Article  CAS  Google Scholar 

  6. Rodríguez-Moreno, A., Herreras, O. & Lerma, J. Kainate receptors presynaptically downregulate GABAergic inhibition in the rat hippocampus. Neuron 19, 893–901 (1997).

    Article  Google Scholar 

  7. Min, M.-Y., Melyan, Z. & Kullmann, D. M. Synaptically released glutamate reduces γ-aminobutyric acid (GABA)ergic inhibition in the hippocampus via kainate receptors. Proc. Natl. Acad. Sci. USA 96, 9932–9937 (1999).

    Article  CAS  Google Scholar 

  8. Brickley, S. G., Cull-Candy, S. G. & Farrant, M. Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J. Physiol. (Lond.) 497, 753–759 (1996).

    Article  CAS  Google Scholar 

  9. Rossi, D. J. & Hamann, M. Spillover-mediated transmission at inhibitory synapses promoted by high affinity α6 subunit GABAA receptors and glomerular geometry. Neuron 20, 783–795 (1998).

    Article  CAS  Google Scholar 

  10. Konnerth, A., Llano, I. & Armstrong, C. M. Synaptic currents in cerebellar Purkinje cells. Proc. Natl. Acad. Sci. USA 87, 2662–2665 (1990).

    Article  CAS  Google Scholar 

  11. Vincent, P., Armstrong, C. M. & Marty, A. Inhibitory synaptic currents in rat cerebellar Purkinje cells: modulation by postsynaptic depolarization. J. Physiol. (Lond.) 456, 453–471 (1992).

    Article  CAS  Google Scholar 

  12. Mitoma, H. & Konishi, S. Monoaminergic long-term facilitation of GABA-mediated inhibitory transmission at cerebellar synapses. Neuroscience 88, 871–883 (1999).

    Article  CAS  Google Scholar 

  13. Konishi, S., Mitoma, H., Ishida, M. & Shinozaki, H. Cerebellar GABAergic transmission reciprocally regulated by monoaminergic receptor-operated facilitation and metabotropic glutamate receptor-operated inhibition. Pharmacol. Rev. Commun. 8, 169–172 (1996).

    CAS  Google Scholar 

  14. Bekkers, J. M. & Stevens, C. F. Presynaptic mechanism for long-term potentiation in the hippocampus. Nature 346, 724–729 (1990).

    Article  CAS  Google Scholar 

  15. Clements, J. D. A. A statistical test for demonstrating a presynaptic site of action for a modulator of synaptic amplitude. J. Neurosci. Methods 31, 75–88 (1990).

    Article  CAS  Google Scholar 

  16. Korn, H. & Faber, D. S. Quantal analysis and synaptic efficacy in the CNS. Trends Neurosci. 14, 439–445 (1991).

    Article  CAS  Google Scholar 

  17. Vollenweider, F. X., Cuenod, M. & Do, K. Q. Effect of climbing fiber deprivation on release of endogenous aspartate, glutamate, and homocysteate in slices of rat cerebellar hemispheres and vermis. J. Neurochem. 54, 1533–1540 (1990).

    Article  CAS  Google Scholar 

  18. Conn, P. J. & Pin, J.-P. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 37, 205–237 (1997).

    Article  CAS  Google Scholar 

  19. Glitsch, M., Llano, I. & Marty, A. Glutamate as a candidate retrograde messenger at interneurone-Purkinje cell synapses of rat cerebellum. J. Physiol. (Lond.) 497, 531–537 (1996).

    Article  CAS  Google Scholar 

  20. Konishi, S. & Mitoma, H. in The Role of Adenosine in the Nervous System (ed. Okada, Y.) 89–95 (Elsevier, New York, 1997).

    Google Scholar 

  21. Bleakman, D. & Lodge, D. Neuropharmacology of AMPA and kainate receptors. Neuropharmacology 37, 1187–1204 (1998).

    Article  CAS  Google Scholar 

  22. Dingledine, R., Borges, K., Bowie, D. & Traynelis, S. F. The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61 (1999).

    CAS  Google Scholar 

  23. Lerma, J., Morales, M., Vicente, M. A. & Herreras, O. Glutamate receptors of the kainate type and synaptic transmission. Trends Neurosci. 20, 9–12 (1997).

    Article  CAS  Google Scholar 

  24. Clarke, V. R. J. et al. A hippocampal GluR5 kainate receptor regulating inhibitory synaptic transmission. Nature 389, 599–603 (1997).

    Article  CAS  Google Scholar 

  25. Vignes, M. & Collingridge, G. L. The synaptic activation of kainate receptors. Nature 388, 179–182 (1997).

    Article  CAS  Google Scholar 

  26. Castillo, P. E., Malenka, R. C. & Nicoll, R. A. Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature 388, 182–186 (1997).

    Article  CAS  Google Scholar 

  27. Partin, K. M. et al. Selective modulation of desensitization at AMPA versus kainate receptors by cyclothiazide and concanavalin A. Neuron 11, 1069–1082 (1993).

    Article  CAS  Google Scholar 

  28. Yamada, K. A. & Tang, C.-M. Benzothiadiazides inhibit rapid glutamate receptor desensitization and enhance glutamatergic synaptic currents. J. Neurosci. 13, 3904–3915 (1993).

    Article  CAS  Google Scholar 

  29. Rodríguez-Moreno, A. & Lerma, J. Kainate receptor modulation of GABA release involves a metabotropic function. Neuron 20, 1211–1218 (1998).

    Article  Google Scholar 

  30. Jan, L. Y. & Jan, Y. N. Peptidergic transmission in sympathetic ganglia of the frog. J. Physiol. (Lond.) 327, 219–246 (1982).

    Article  CAS  Google Scholar 

  31. Min, M.-Y., Rusakov, D. A. & Kullmann, D. M. Activation of AMPA, kainate, and metabotropic receptors at hippocampal mossy fiber synapses: role of glutamate diffusion. Neuron 21, 561–570 (1998).

    Article  CAS  Google Scholar 

  32. Kano, M., Rexhausen, U., Dreessen, J. & Konnerth, A. Synaptic excitation produces a long-lasting rebound potentiation of inhibitory signals in cerebellar Purkinje cells. Nature 356, 601–604 (1992).

    Article  CAS  Google Scholar 

  33. Wang, Y., Small, D. L., Stanimirovic, D. B., Morley, P. & Durkin, J. P. AMPA receptor-mediated regulation of a Gi-protein in cortical neurons. Nature 389, 502–504 (1997).

    Article  CAS  Google Scholar 

  34. Keinänen, K. et al. A family of AMPA-selective glutamate receptors. Science 249, 556–560 (1990).

    Article  Google Scholar 

  35. Petralia, R. S. & Wenthold, R. J. Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain. J. Comp. Neurol. 318, 329–354 (1992).

    Article  CAS  Google Scholar 

  36. Mitoma, H., Kobayashi, T., Song, S.-Y. & Konishi, S. Enhancement by serotonin of GABA-mediated inhibitory synaptic currents in rat cerebellar Purkinje cells. Neurosci. Lett. 173, 127–130 (1994).

    Article  CAS  Google Scholar 

  37. Kondo, S. & Marty, A. Protein kinase A-mediated enhancement of minature frequency by noradrenaline in rat cerebellar stellate cells. J. Physiol. (Lond.) 498, 165–176 (1997).

    Article  CAS  Google Scholar 

  38. Ito, M. Long-term depression. Annu. Rev. Neurosci. 12, 85–102 (1989).

    Article  CAS  Google Scholar 

  39. Jacobs, B. L. & Fornal, C. A. 5-HT and motor control: a hypothesis. Trends Neurosci. 16, 346–352 (1993).

    Article  CAS  Google Scholar 

  40. Mauk, M. D. Roles of cerebellar cortex and nuclei in motor learning: contradictions or clues? Neuron 18, 343–346 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Bowery, T. Murakoshi, H. Suzuki and K. Yoshioka for comments on the manuscript and D. Lodge at Eli Lilly and Fujisawa Pharmaceutical for the gifts of GYKI 53655 and FK506, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiro Konishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satake, S., Saitow, F., Yamada, J. et al. Synaptic activation of AMPA receptors inhibits GABA release from cerebellar interneurons. Nat Neurosci 3, 551–558 (2000). https://doi.org/10.1038/75718

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75718

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing