Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Joint-encoding of motion and depth by visual cortical neurons: neural basis of the Pulfrich effect

Abstract

Motion and stereoscopic depth are fundamental parameters of the structural analysis of visual scenes. Because they are defined by a difference in object position, either over time or across the eyes, a common neural machinery may be used for encoding these attributes. To examine this idea, we analyzed responses of binocular complex cells in the cat striate cortex to stimuli of various intra- and interocular spatial and temporal shifts. We found that most neurons exhibit space–time-oriented response profiles in both monocular and binocular domains. This indicates that these neurons encode motion and depth jointly, and it explains phenomena such as the Pulfrich effect. We also found that the relationship between neuronal tuning of motion and depth conforms to that predicted by the use of motion parallax as a depth cue. These results demonstrate a joint-encoding of motion and depth at an early cortical stage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Pulfrich effect.
Figure 2: Hypothetical tuning profiles of neurons for interocular spatial offset and time difference.
Figure 3: Examples of two-bar interaction profiles.
Figure 4: A population distribution of tilt directional index for binocular profiles.
Figure 5: Relationships between motion and depth tuning.
Figure 6: An explanation of the Pulfrich effect based on neurons tuned to motion and binocular disparity.

Similar content being viewed by others

References

  1. Braddick, O. A short-range process in apparent motion. Vision Res. 14, 519–527 (1974).

    Article  CAS  Google Scholar 

  2. Wheatstone, C. Contributions to the physiology of vision: I. On some remarkable and hitherto unobserved phenomena of binocular vision. Phil. Trans. Royal Soc. Lond. 128, 371–394 (1838).

    Article  Google Scholar 

  3. Pulfrich, C. Die Stereoskopie im Dienste der isochromem und herterochromen Photometrie. Naturwissenschaft 10, 553–564 (1922).

    Article  Google Scholar 

  4. Julesz, B. & White, B. Short term visual memory and the Pulfrich phenomenon. Nature 222, 639–641 (1969).

    Article  CAS  Google Scholar 

  5. Morgan, M. J. & Thompson, P. Apparent motion and the Pulfrich effect. Perception 4, 3–18 (1975).

    Article  CAS  Google Scholar 

  6. Burr, D. C. & Ross, J. How does binocular delay give information about depth? Vision Res. 19, 523–532 (1979).

    Article  CAS  Google Scholar 

  7. Cynader, M., Gardner, J. & Douglas, R. in Frontiers in Visual Science (Cool, S. J. & Smith, E. L., eds.) 373–386 (Springer, Berlin, 1978).

    Book  Google Scholar 

  8. Carney, T., Paradiso, M. A. & Freeman, R. D. A physiological correlate of the Pulfrich effect in cortical neurons of the cat. Vision Res. 29, 155–165 (1989).

    Article  CAS  Google Scholar 

  9. Lit, A. The magnitude of the Pulfrich stereophenomenon as a function of binocular differences in intensity at various levels of illumination. Am. J. Psych. 62, 159–181 (1949).

    Article  CAS  Google Scholar 

  10. Wilson, J. A. & Anstis, S. M. Visual delay as a function of luminance. Am. J. Psych. 82, 350–358 (1969).

    Article  CAS  Google Scholar 

  11. Nickalls, R. W. The rotating Pulfrich effect, and a new method of determining visual latency differences. Vision Res. 26, 367–372 (1986).

    Article  CAS  Google Scholar 

  12. Howard, I. P. & Rogers, B. J. Binocular Vision and Stereopsis (Oxford Univ. Press, New York, 1995).

    Google Scholar 

  13. Tyler, C. W. Stereopsis in dynamic visual noise. Nature 250, 781–782 (1974).

    Article  CAS  Google Scholar 

  14. Falk, D. S. Dynamic visual noise and the stereophenomenon: interocular time delays, depth and coherent velocities. Percept. Psychophys. 28, 19–27 (1980).

    Article  CAS  Google Scholar 

  15. Lee, D. N. A stroboscopic stereophenomenon. Vision Res. 10, 587–593 (1970).

    Article  CAS  Google Scholar 

  16. Morgan, M. J. Perception of continuity in stroboscopic motion: a temporal frequency analysis. Vision Res. 19, 491–500 (1979).

    Article  CAS  Google Scholar 

  17. Ross, J. Stereopsis by binocular delay. Nature 248, 363–364 (1974).

    Article  CAS  Google Scholar 

  18. Qian, N. & Andersen, R. A. A physiological model for motion-stereo integration and a unified explanation of Pulfrich-like phenomena. Vision Res. 37, 1683–1698 (1997).

    Article  CAS  Google Scholar 

  19. Sutter, E. E. in Nonlinear Vision: Determination of Neural Receptive Fields (Pinter, R. B. & Nabet, B., eds.) 171–220 (CRC, Boca Raton, 1992).

    Google Scholar 

  20. Anzai, A., Ohzawa, I. & Freeman, R. D. Neural mechanisms for processing binocular information I. Simple cells. J. Neurophysiol. 82, 891–908 (1999).

    Article  CAS  Google Scholar 

  21. Anzai, A., Ohzawa, I. & Freeman, R. D. Neural mechanisms for processing binocular information II. Complex cells. J. Neurophysiol. 82, 909–924 (1999).

    Article  CAS  Google Scholar 

  22. Emerson, R. C., Citron, M. C., Vaughn, W. J. & Klein, S. A. Nonlinear directionally selective subunits in complex cells of cat striate cortex. J. Neurophysiol. 58, 33–65 (1987).

    Article  CAS  Google Scholar 

  23. DeAngelis, G. C., Ohzawa, I. & Freeman, R. D. Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. I. General characteristics and postnatal development. J. Neurophysiol. 69, 1091–1117 (1993).

    Article  CAS  Google Scholar 

  24. DeAngelis, G. C., Ghose, G. M., Ohzawa, I. & Freeman, R. D. Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons. J. Neurosci. 19, 4046–4064 (1999).

    Article  CAS  Google Scholar 

  25. O. Braddick, A. Adlard in Visual Psychophysics and Physiology (Armington, J. C., Krauskopf, J. & Wooten, B. R., eds.) 417–426 (Academic, New York, 1978).

    Book  Google Scholar 

  26. Georgeson, M. A. & Shackleton, T. M. Monocular motion sensing, binocular motion perception. Vision Res. 29, 1511–1523 (1989).

    Article  CAS  Google Scholar 

  27. Carney, T. & Shadlen, M. N. Dichoptic activation of the early motion system. Vision Res. 33, 1977–1995 (1993).

    Article  CAS  Google Scholar 

  28. Carney, T. & Shadlen, M. N. Binocularity of early motion mechanisms: comments on Georgeson and Shackleton. Vision Res. 32, 187–191 (1992).

    Article  CAS  Google Scholar 

  29. Georgeson, M. A. & Shackleton, T. M. No evidence for dichoptic motion sensing: a reply to Carney and Shadlen. Vision Res. 32, 193–198 (1992).

    Article  CAS  Google Scholar 

  30. Morgan, M. J. & Castet, E. Stereoscopic depth perception at high velocities. Nature 378, 380–383 (1995).

    Article  CAS  Google Scholar 

  31. Ziegler, L. R. & Roy, J.-P. Large scale stereopsis and optic flow: depth enhanced by speed and opponent-motion. Vision Res. 38, 1199–1209 (1998).

    Article  CAS  Google Scholar 

  32. Adelson, E. H. & Bergen, J. R. Spatio-temporal energy models for the perception of motion. J. Opt. Soc. Am. A2, 284–299 (1985).

    Article  Google Scholar 

  33. Emerson, R. C., Bergen, J. R. & Adelson, R. H. Directionally selective complex cells and the computation of motion energy in cat visual cortex. Vision Res. 32, 203–218 (1992).

    Article  CAS  Google Scholar 

  34. Ohzawa, I., DeAngelis, G. C. & Freeman, R. D. Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science 249, 1037–1041 (1990).

    Article  CAS  Google Scholar 

  35. Ohzawa, I., DeAngelis, G. C. & Freeman, R. D. Encoding of binocular disparity by complex cells in the cat's visual cortex. J. Neurophysiol. 77, 2879–2909 (1997).

    Article  CAS  Google Scholar 

  36. Movshon, J. A., Thompson, I. D. & Tolhurst, D. J. Receptive field organization of complex cells in the cat's striate cortex. J. Physiol. (Lond.) 283, 79–99 (1978).

    Article  CAS  Google Scholar 

  37. Szulborski, R. G. & Palmer, L. A. The two-dimensional spatial structure of nonlinear subunits in the receptive fields of complex cells. Vision Res. 30, 249–254 (1990).

    Article  CAS  Google Scholar 

  38. Gaska, J. P., Jacobson, L. D., Chen, H. W. & Pollen, D. A. Space-time spectra of complex cell filters in the macaque monkey: a comparison of results obtained with pseudowhite noise and grating stimuli. Vis. Neurosci. 11, 805–821 (1994).

    Article  CAS  Google Scholar 

  39. Ohzawa, I. & Freeman, R. D. The binocular organization of complex cells in the cat's visual cortex. J. Neurophysiol. 56, 243–259 (1986).

    Article  CAS  Google Scholar 

  40. Rogers, B. J. & Graham, M. E. Motion parallax as an independent cue for depth perception. Perception 8, 125–134 (1979).

    Article  CAS  Google Scholar 

  41. Poggio, G. F. & Fischer, B. Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. J. Neurophysiol. 40, 1392–1405 (1977).

    Article  CAS  Google Scholar 

  42. Maunsell, J. H. & Van Essen, D. C. Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. J. Neurophysiol. 49, 1148–1167 (1983).

    Article  CAS  Google Scholar 

  43. Felleman, D. J. & Van Essen, D. C. Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex. J. Neurophysiol. 57, 889–920 (1987).

    Article  CAS  Google Scholar 

  44. Roy, J.-P., Komatsu, H. & Wurtz, R. H. Disparity sensitivity of neurons in monkey extrastriate area MST. J. Neurosci. 12, 2478–2492 (1992).

    Article  CAS  Google Scholar 

  45. Bradley, D. C., Qian, N. & Andersen, R. A. Integration of motion and stereopsis in middle temporal cortical area of macaques. Nature 373, 609–611 (1995).

    Article  CAS  Google Scholar 

  46. DeAngelis, G. C., Cumming, B. G. & Newsome, W. T. Cortical area MT and the perception of stereoscopic depth. Nature 394, 677–680 (1998).

    Article  CAS  Google Scholar 

  47. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Neumerical Recipes in C 2nd edn. (Cambridge Univ. Press, New York, 1992).

    Google Scholar 

Download references

Acknowledgements

We thank G. DeAngelis for helpful comments and suggestions. This work was supported by research and CORE grants from the National Eye Institute (EY-01175 and EY-03176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph D. Freeman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anzai, A., Ohzawa, I. & Freeman, R. Joint-encoding of motion and depth by visual cortical neurons: neural basis of the Pulfrich effect. Nat Neurosci 4, 513–518 (2001). https://doi.org/10.1038/87462

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/87462

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing