Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

G-protein-coupled receptors act via protein kinase C and Src to regulate NMDA receptors

Abstract

The N-methyl-D-aspartate (NMDA) receptor contributes to synaptic plasticity in the central nervous system and is both serine-threonine and tyrosine phosphorylated. In CA1 pyramidal neurons of the hippocampus, activators of protein kinase C (PKC) as well as the G-protein-coupled receptor ligands muscarine and lysophosphatidic acid enhanced NMDA-evoked currents. Unexpectedly, this effect was blocked by inhibitors of tyrosine kinases, including a Src required sequence and an antibody selective for Src itself. In neurons from mice lacking c-Src, PKC-dependent upregulation was absent. Thus, G-protein-coupled receptors can regulate NMDA receptor function indirectly through a PKC-dependent activation of the non-receptor tyrosine kinase (Src) signaling cascade.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phorbol esters enhance peak NMDA-evoked currents and seem to facilitate desensitization in isolated CA1 hippocampal neurons.
Figure 2: Applications of the phosphatase inhibitor okadaic acid further enhanced the effects of PMA on peak NMDA-activated currents in isolated hippocampal neurons.
Figure 3: Non-selective blockers of tyrosine kinases reduce the PMA-induced potentiation of NMDA-evoked currents recorded in isolated neurons and Xenopus oocytes.
Figure 4: Cell-attached patches were also used to record single-channel NMDA-activated currents (10 μM) in isolated CA1 neurons.
Figure 5: The 4β-PMA-induced potentiation of NMDA-evoked currents depends on the activation of Src.
Figure 6: Intracellular PKM enhanced the NMDA-receptor-mediated component of mEPSCs recorded from cultured hippocampal neurons, and this enhancement was prevented by co-application of Src(40–58).
Figure 7: G-protein-coupled receptors modulate NMDA-receptor-mediated responses through activation of PKC and protein tyrosine kinase Src.

Similar content being viewed by others

References

  1. Hollmann, M. & Heinemann, S. Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108 (1994).

    Article  CAS  Google Scholar 

  2. Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  CAS  Google Scholar 

  3. Barria, A., Muller, D., Derkach, V., Griffith, L. C. & Soderling, T. R. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 276, 2042–2045 (1997).

    Article  CAS  Google Scholar 

  4. Kojima, N. et al. Rescuing impairment of long-term potentiation in fyn-deficient mice by introducing Fyn transgene. Proc. Natl. Acad. Sci. USA 94, 4761–4765 (1997).

    Article  CAS  Google Scholar 

  5. O'Dell, T. J., Grant, S. G. N., Karl, K., Soriano, P. M. & Kandel E. R. Pharmacological and genetic approaches to the analysis of tyrosine kinase function in long-term potentiation. Cold Spring Harbor Symp. Quant. Biol. 57, 517– 526 (1992).

    Article  CAS  Google Scholar 

  6. Lu, Y. M., Roder, J. C., Davidow, J. & Salter, M. W. Src activation in the induction of long-term potentiation in CA1 hippocampal neurons. Science 279, 1363– 1367 (1998).

    Article  CAS  Google Scholar 

  7. Yu, X. M., Askalan, R., Keil, G. J. & Salter M. W. NMDA channel regulation by channel-associated protein tyrosine kinase Src. Science 275, 674–678 (1997).

    Article  CAS  Google Scholar 

  8. Tingley, W. G. et al. Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-D-aspartate receptor NR1 subunit using phosphorylation site-specific antibodies. J. Biol. Chem. 272, 5157–5166 (1997).

    Article  CAS  Google Scholar 

  9. Tingley, W. G., Roche, K. W., Thompson, A. K. & Huganir R. L. Regulation of NMDA receptor phosphorylation by alternative splicing of the C-terminal domain. Nature 364, 70– 73 (1993).

    Article  CAS  Google Scholar 

  10. Leonard, A. S. & Hell, J. W. Cyclic AMP-dependent protein kinase and protein kinase C phosphorylate N-methyl-D-aspartate receptors at different sites. J. Biol. Chem. 272, 12107–12115 (1997).

    Article  CAS  Google Scholar 

  11. Zukin, R. S. & Bennett, M. V. Alternatively spliced isoforms of the NMDARI receptor subunit. Trends Neurosci. 18, 306–313 (1995).

    Article  CAS  Google Scholar 

  12. Chen, L. & Huang, L. Y. Protein kinase C reduces Mg2+ block of NMDA-receptor channels as a mechanism of modulation. Nature 356, 521–523 (1992).

    Article  CAS  Google Scholar 

  13. Xiong, Z.-G. et al. Regulation of NMDA receptor function by constitutively active protein kinase C. Mol. Pharmacol. 54, 1055–1063 (1998).

    Article  CAS  Google Scholar 

  14. Ben-Ari, Y., Aniksztejn, L. & Bregestovski, P. Protein kinase C modulation of NMDA currents: an important link for LTP induction. Trends Neurosci. 15, 333–339 (1992).

    Article  CAS  Google Scholar 

  15. Kelso, S. R., Nelson, T. E. & Leonard, J. P. Protein kinase C-mediated enhancement of NMDA currents by metabotropic glutamate receptors in Xenopus oocytes. J. Physiol. (Lond.) 449, 705–718 (1992).

    Article  CAS  Google Scholar 

  16. Markram, H. & Segal, M. Activation of protein kinase C suppresses responses to NMDA in rat CA1 hippocampal neurons. J. Physiol. (Lond.) 457, 491–501 (1992).

    Article  CAS  Google Scholar 

  17. Sasaki, H. et al. Cloning and characterization of cell adhesion kinase beta, a novel protein-tyrosine kinase of the focal adhesion kinase subfamily. J. Biol. Chem. 270, 21206–21219 (1995).

    Article  CAS  Google Scholar 

  18. Luttrell, L. M. et al. Role of c-Src tyrosine kinase in G protein-coupled receptor- and Gbetagamma subunit-mediated activation of mitogen-activated protein kinases. J. Biol. Chem. 271, 19443– 19450 (1996).

    Article  CAS  Google Scholar 

  19. Della, R. G. J. et al. Ras-dependent mitogen-activated protein kinase activation by G protein-coupled receptors. Convergence of Gi- and Gq-mediated pathways on calcium/calmodulin, Pyk2, and Src kinase. J. Biol. Chem. 272, 19125–19132 (1997).

    Article  Google Scholar 

  20. Dikic, I., Tokiwa, G., Lev, S., Courtneidge, S. A. & Schlessinger, J. A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature 383, 547–550 (1996).

    Article  CAS  Google Scholar 

  21. Lev, S. et al. Protein tyrosine kinase PYK2 involved in Ca2+-induced regulation of ion channel and MAP kinase functions. Nature 376, 737–745 (1995).

    Article  CAS  Google Scholar 

  22. Felsch, J. S., Cachero, T. G. & Peralta, E. G. Activation of protein tyrosine kinase PYK2 by the m1 muscarinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 95, 5051–5056 (1998).

    Article  CAS  Google Scholar 

  23. Hemmings, H. C. J. in Regulatory Protein Modification: Techniques and Protocols (ed. Hemmings, H. C. J.) 121–218 (Humana, Totowa, New Jersey, 1997).

    Google Scholar 

  24. Wang, L. Y., Orser, B. A., Brautigan, D. L. & MacDonald, J. F. Regulation of NMDA receptors in cultured hippocampal neurons by protein phosphatases 1 and 2A. Nature 369, 230– 232 (1994).

    Article  CAS  Google Scholar 

  25. Roche, S., Fumagalli, S. & Courtneidge, S. A. Requirement for Src family protein tyrosine kinases in G2 for fibroblast cell division. Science 269, 1567–1569 (1995).

    Article  CAS  Google Scholar 

  26. Lowell, C. A. & Soriano, P. Knockouts of Src-family kinases: stiff bones, wimpy T cells, and bad memories. Genes Devel. 10, 1845–1857 (1996).

    Article  CAS  Google Scholar 

  27. Gutkind, J. S. The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J. Biol. Chem. 273, 1839–1842 (1998).

    Article  CAS  Google Scholar 

  28. Levey, A. I. Muscarinic acetylcholine receptor expression in memory circuits: implications for treatment of Alzheimer disease. Proc. Natl. Acad. Sci.USA 93, 13541–13546 (1996).

    Article  CAS  Google Scholar 

  29. Marino, M. J., Rouse, S. T., Levey, A. I., Potter, L. T. & Conn, P. J. Activation of the genetically defined m1 muscarinic receptor potentiates N-methyl-D-aspartate (NMDA) receptor currents in hippocampal pyramidal cells. Proc. Natl. Acad. Sci.USA 95, 11465–11470 (1998).

    Article  CAS  Google Scholar 

  30. Igishi, T. & Gutkind, J. S. Tyrosine kinases of the Src family participate in signaling to MAP kinase from both Gq and Gi-coupled receptors. Biochem. Biophys. Res. Commun. 244, 5– 10 (1998).

    Article  CAS  Google Scholar 

  31. Parfitt, K. D. & Madison, D. V. Phorbol esters enhance synaptic transmission by a presynaptic, calcium-dependent mechanism in rat hippocampus. J. Physiol.(Lond.) 471, 245–268 (1993).

    Article  CAS  Google Scholar 

  32. Zheng, F., Gingrich, M. B., Traynelis, S. F. & Conn, P. J. Tyrosine kinase potentiates NMDA receptor currents by reducing tonic zinc inhibition. Nat. Neurosci. 1, 185– 191 (1998).

    Article  CAS  Google Scholar 

  33. Constantine-Paton, M. NMDA receptor as a mediator of activity-dependent synaptogenesis in the developing brain. Cold Spring Harbor Symp. Quant. Biol. 55, 431–443 (1990).

    Article  CAS  Google Scholar 

  34. Wheal, H. V. et al. Molecular mechanisms that underlie structural and functional changes at the postsynaptic membrane during synaptic plasticity. Prog. Neurobiol. 55, 611–640 (1998).

    Article  CAS  Google Scholar 

  35. Wang, L. Y. & MacDonald, J. F. Modulation by magnesium of the affinity of NMDA receptors for glycine in murine hippocampal neurones. J. Physiol. (Lond.) 486, 83– 95 (1995).

    Article  CAS  Google Scholar 

  36. MacDonald, J. F., Mody, I. & Salter, M. W. Regulation of N-methyl-D-aspartate receptors revealed by intracellular dialysis of murine neurones in culture. J. Physiol. (Lond.) 414, 17–34 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M.W. Salter, S. Courtneidge and J. Roder for reagents and knockout mice. We thank M.W. Salter for assistance with the design of some of the experiments. We also thank X-M. Yu and L-Y. Wang for discussions. This work was supported by grants from the MRC of Canada. W-Y.L., Z-G.X. and S.L. are fellows of the Heart & Stroke, the MRC and the Ontario Neurotrauma Fnd., respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. MacDonald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, WY., Xiong, ZG., Lei, S. et al. G-protein-coupled receptors act via protein kinase C and Src to regulate NMDA receptors. Nat Neurosci 2, 331–338 (1999). https://doi.org/10.1038/7243

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/7243

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing