Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Frontal cortex contributes to human memory formation

Abstract

The contribution of medial temporal lobe structures to memory is well established. However recent brain-imaging studies have indicated that frontal cortex may also be involved in human memory formation. Specific frontal areas are recruited during a variety of procedures that promote memory formation, and the laterality of these areas is influenced by the type of information contained in the memory. Imaging methods that capture momentary changes in brain activity have further shown that the likelihood of memory formation correlates with the level of activity in these areas. These results, taken in the context of other studies, suggest that memory formation depends on joint participation of frontal and medial temporal lobe structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A lateral view of the human brain schematically illustrates frontal regions active during tasks that promote memorization of verbal materials.
Figure 2: Frontal regions active during memory encoding may depend on the materials being memorized.
Figure 3: Activity within frontal regions can predict which items will be remembered or forgotten.

Similar content being viewed by others

References

  1. Squire, L. R. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 195– 231 (1992).

    Article  CAS  Google Scholar 

  2. Cohen, N. J. & Eichenbaum, H. Memory, Amnesia, and the Hippocampal System (MIT Press, Cambridge, Massachusetts, 1993).

    Google Scholar 

  3. Schacter, D. L. & Tulving, E. Memory Systems 1994 (MIT Press, Cambridge, Massachusetts, 1994).

    Google Scholar 

  4. Kapur, S. et al. The neural correlates of intentional learning of verbal materials: a PET study in humans. Brain Res. Cogn. Brain Res. 4, 243–249 (1996).

    Article  CAS  Google Scholar 

  5. Dolan, R. J. & Fletcher, P. C. Dissociating prefrontal and hippocampal function in episodic memory encoding. Nature 388, 582–585 (1997).

    Article  CAS  Google Scholar 

  6. Kelley, W. M. et al. Hemispheric specialization in human dorsal frontal cortex and medial temporal lobe for verbal and nonverbal memory encoding. Neuron 20, 927–936 (1998).

    Article  CAS  Google Scholar 

  7. Craik, F. I. M. & Tulving, E. Depth of processing and the retention of words in episodic memory. J. Exp. Psychol. Gen. 104, 168–294 (1975).

    Article  Google Scholar 

  8. Kapur, S. et al. Neuroanatomical correlates of encoding in episodic memory: levels of processing effect. Proc. Natl. Acad. Sci.USA 91, 2008–2011 (1994).

    Article  CAS  Google Scholar 

  9. Demb, J. B. et al. Semantic encoding and retrieval in the left inferior prefrontal cortex: a functional MRI study of task difficulty and process specificity. J. Neurosci. 15, 5870– 5878 (1995).

    Article  CAS  Google Scholar 

  10. Wagner, A. D. et al. Building memories: remembering and forgetting of verbal experiences as predicted by brain activity Science 281, 1188–1191 (1998).

    Article  CAS  Google Scholar 

  11. Craik, F. I., Govoni, R., Naveh-Benjamin, M. & Anderson, N. D. The effects of divided attention on encoding and retrieval processes in human memory. J. Exp. Psychol. Gen. 125, 159– 180 (1996).

    Article  CAS  Google Scholar 

  12. Shallice, T. et al. Brain regions associated with acquisition and retrieval of verbal episodic memory. Nature 368, 633– 635 (1994).

    Article  CAS  Google Scholar 

  13. Fabiani, M., Karis, M. & Donchin, E. P300 and recall in an incidental memory paradigm. Psychophysiology 23, 298–308 (1986).

    Article  CAS  Google Scholar 

  14. Paller, K. A. Recall and stem-completion priming have different electrophysiological correlates and are modified differentially by directed forgetting. J. Exp. Psychol. Learn. Mem. Cogn. 16, 1021– 1032 (1990).

    Article  CAS  Google Scholar 

  15. Rugg, M. D. in Electrophysiology of Mind: Event-Related Brain Potentials and Cognition (eds. Rugg, M. D. & Coles, M. G. H.) 132–170 (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  16. Buckner, R. L. et al. Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. Proc. Natl. Acad. Sci. USA 93, 14878– 14883 (1996).

    Article  CAS  Google Scholar 

  17. Dale, A. M. & Buckner, R. L. Selective averaging of rapidly presented individual trials using fMRI. Hum. Brain Mapp. 5, 329–340 (1997).

    Article  CAS  Google Scholar 

  18. Josephs, O., Turner, R. & Friston, K. Event-related fMRI. Hum. Brain Mapp. 5, 243–248 (1997).

    Article  CAS  Google Scholar 

  19. Kim, S. G., Richter, W. & Ugurbil, K. Limitations of temporal resolution in functional MRI. Magn. Reson. Med. 37, 631– 636 (1997).

    Article  CAS  Google Scholar 

  20. Zarahn, E., Aguirre, G. & D'Esposito, M. A trial-based experimental design for fMRI. Neuroimage 6, 122–138 (1997).

    Article  CAS  Google Scholar 

  21. Brewer, J. B., Zhao, Z., Glover, G. H. & Gabrieli, J. D. E. Making memories: brain activity that predicts how well visual experience will be remembered. Science 281,1185– 1187 (1998).

    Article  CAS  Google Scholar 

  22. Tulving, E., Kapur, S., Craik, F. I. M., Moscovitch, M. & Houle, S. Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings. Proc. Natl. Acad. Sci. USA 91, 2016–2020 (1994).

    Article  CAS  Google Scholar 

  23. Paivio, A. & Csapo, K. Picture superiority in free recall: imagery or dual coding? Cogn. Psychol. 5, 176–206 (1973).

    Article  Google Scholar 

  24. Paivio, A. Mental Representations (Oxford Univ. Press, New York, 1986).

    Google Scholar 

  25. Milner, B. & Taylor, L. Right-hemisphere superiority in tactile pattern-recognition after cerebral commissurotomy: evidence for nonverbal memory. Neuropsychologia 10, 1– 15 (1972).

    Article  CAS  Google Scholar 

  26. Gazzaniga, M. S. & Smylie, C. S. Facial recognition and brain asymmetries: clues to underlying mechanisms. Ann. Neurol. 13, 536–540 (1983).

    Article  CAS  Google Scholar 

  27. Milner, B. Some cognitive effects of frontal-lobe lesions in man. Phil. Trans. R. Soc. Lond. B 298, 211–226 (1982).

    Article  CAS  Google Scholar 

  28. Jones-Gotman, M. & Milner, B. Design fluency: the invention of nonsense drawings after focal cortical lesions. Neuropsychologia 15, 653–674 (1977).

    Article  CAS  Google Scholar 

  29. Wagner, A. D. et al. Material-specific lateralization of prefrontal activation during episodic encoding and retrieval. Neuroreport 9, 3711–3717 (1998).

    Article  CAS  Google Scholar 

  30. Haxby, J. V. et al. Face encoding and recognition in the human brain. Proc. Natl. Acad. Sci.USA 93, 922– 927 (1996).

    Article  CAS  Google Scholar 

  31. Grady, C. L. et al. Age-related reductions in human recognition memory due to impaired encoding. Science 269, 218– 221 (1995).

    Article  CAS  Google Scholar 

  32. Milner, B., Petrides, M. & Smith, M. L. Frontal lobes and the temporal organization of memory. Hum. Neurobiol. 4, 137– 142 (1985).

    CAS  PubMed  Google Scholar 

  33. Shimamura, A. P., Janowsky, J. S. & Squire, L. R. in Frontal Lobe Function and Dysfunction (eds. Levin, H., Eisenberg, H. M. & Benton, A. L.) 173– 198 (Oxford Univ. Press, New York, 1991).

    Google Scholar 

  34. Schacter, D. L. Memory, amnesia, and frontal lobe dysfunction. Psychobiology 15, 21–36 (1987).

    Google Scholar 

  35. Stuss, D. T. & Benson, D. F. The Frontal Lobes (Raven, New York, 1986).

    Google Scholar 

  36. Fuster, J. M. The Prefrontal Cortex (Raven, New York, 1989).

    Google Scholar 

  37. Goldman-Rakic, P. S. in The Handbook of Physiology: Section 1. The Nervous System: Vol. V Higher functions of the brain: (eds. Plum, F. & Mountcastle, V.) Pt. 1, 373–417 (American Physiological Society, Bethesda, Maryland, 1987).

    Google Scholar 

  38. Smith, E. E. & Jonides, J. Working memory: a view from neuroimaging. Cogn. Psychol. 33, 5–42 (1997).

    Article  CAS  Google Scholar 

  39. Buckner, R. L. & Tulving, E. in Handbook of Neuropsychology (eds. Boller, F. & Grafman, J.) 439– 466 (Elsevier, Amsterdam, 1995).

    Google Scholar 

  40. Riege, W. H., Metter, E. J. & Hanson, W. R. Verbal and nonverbal recognition memory in aphasic and nonaphasic stroke patients. Brain Lang. 10, 60–70 (1980).

    Article  CAS  Google Scholar 

  41. Whitehouse, P. J. Imagery and verbal encoding in left and right hemisphere damaged patients. Brain Lang. 14, 315–332 (1981).

    Article  CAS  Google Scholar 

  42. Corkin, S. Lasting consequences of bilateral medial temporal lobe lobectomy: Clinical course and experimental finding in H.M. Semin. Neurol. 4, 249–259 (1984).

    Article  Google Scholar 

  43. Hyman, B. T., Van Horsen, G. W., Damasio, A. R. & Barnes, C. L. Alzheimer's disease: cell-specific pathology isolates the hippocampal formation. Science 225, 1168–1170 (1984).

    Article  CAS  Google Scholar 

  44. Samuel, W., Masliah, E., Hill, L. R., Butters, N. & Terry, R. Hippocampal connectivity and Alzheimer's dementia: effects of synapse loss and tangle frequency in a two-component model. Neurology 44, 2081–2088 (1994).

    Article  CAS  Google Scholar 

  45. Price, J. L., Davis, P. B., Morris, J. C. & White, D. L. The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer's disease. Neurobiol. Aging 12, 295–312 (1991).

    Article  CAS  Google Scholar 

  46. Zola-Morgan, S. & Squire, L. R. Neuroanatomy of memory. Annu. Rev. Neurosci. 16, 547– 563 (1993).

    Article  CAS  Google Scholar 

  47. Murray, E. A. What have ablation studies told us about neural substrates of stimulus memory? Semin. Neurosci. 8, 13– 22 (1996).

    Article  Google Scholar 

  48. Schacter, D. L. & Wagner, A. D. Medial temporal lobe activations in fMRI and PET studies of episodic encoding and retrieval. Hippocampus 9, 7–24 (1999).

    Article  CAS  Google Scholar 

  49. Buckner, R. L. & Koutstaal, W. Functional neuroimaging studies of encoding, priming, and explicit memory retrieval. Proc. Natl. Acad. Sci. USA 95, 891–898 (1998).

    Article  CAS  Google Scholar 

  50. Moscovitch, M. Memory and working-with-memory: A component process model based on modules and central systems. J. Cogn. Neurosci. 4, 257–267 (1992).

    Article  CAS  Google Scholar 

  51. Cohen, N. J. et al. Hippocampal system and declarative (relational) memory: Summarizing from functional neuroimaging studies. Hippocampus 9, 83–98 (1999).

    Article  CAS  Google Scholar 

  52. Martin, A., Wiggs, C. L. & Weisberg, J. Modulation of human medial temporal lobe activity by form, meaning, and experience. Hippocampus 7, 587–593 (1997).

    Article  CAS  Google Scholar 

  53. Stern, C. E. et al. The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging. Proc. Natl. Acad. Sci. USA 93, 8660–8665 (1996).

    Article  CAS  Google Scholar 

  54. Tulving, E., Markowitsch, H. J., Craik, F. I. M., Habib, R. & Houle, S. Novelty and familiarity activations in PET studies of memory encoding and retrieval. Cereb. Cortex 6, 71–79 (1996).

    Article  CAS  Google Scholar 

  55. Gabrieli, J. D. E., Poldrack, R. A. & Desmond, D. E. The role of left prefrontal cortex in language and memory. Proc. Natl. Acad. Sci. USA 95, 906–913 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Neal Cohen, Anthony Wagner, David Donaldson, Jessica Logan and Amy Sanders provided comments. This work was supported by grants from the National Institute of Mental Health (MH57506-01), the McDonnell Center for Higher Brain Function and the Human Frontiers Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy L. Buckner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buckner, R., Kelley, W. & Petersen, S. Frontal cortex contributes to human memory formation. Nat Neurosci 2, 311–314 (1999). https://doi.org/10.1038/7221

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/7221

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing