Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acetylcholine receptor M3 domain: stereochemical and volume contributions to channel gating

An Erratum to this article was published on 01 May 1999

Abstract

By defining the functional defect in a congenital myasthenic syndrome (CMS), we show that the third transmembrane domain (M3) of the muscle acetylcholine receptor governs the speed and efficiency of gating of its channel. The clinical phenotype of this CMS results from the mutation V285I in M3 of the α subunit, which attenuates endplate currents, accelerates their decay and causes abnormally brief acetylcholine-induced single-channel currents. Kinetic analysis of engineered αV285I receptors demonstrated a predominant effect on channel gating, with abnormally slow opening and rapid closing rates. Analysis of site-directed mutations revealed stereochemical and volume-dependent contributions of αV285 to channel gating. Thus, we demonstrate a functional role for the M3 domain as a key component of the nicotinic acetylcholine receptor channel-gating mechanism.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrophysiology of the endplate.
Figure 2: Genetic analysis of the mutations.
Figure 3: Alpha-bungarotoxin binding to HEK cells transfected with nAChR subunits.
Figure 4: Kinetics of activation of wild-type and mutant AchRs.
Figure 5: Dependence of channel open probability (Popen) on ACh concentration for mutant receptors.
Figure 6: Stereochemical and volume contributions to channel gating.

Similar content being viewed by others

References

  1. Changeux, J. P. Functional architecture and dynamics of the nicotinic acetylcholine receptor, an allosteric ligand-gated ion channel. Fida Res. Found. Neurosci. Award Lect. 4, 21–168 ( 1990).

    Google Scholar 

  2. Engel, A. G., Ohno, K., Wang, H.-L., Milone, M. & Sine, S. M. Molecular basis of congenital myasthenic syndromes: Mutations in the acetylcholine receptor. Neuroscientist 4, 185–194 (1998).

    Article  CAS  Google Scholar 

  3. Plomp, J. J., van Kempen, G. T. H. & Molenaar, P. C. Adaptation of quantal content to decreased postsynaptic sensitivity at single endplates in α-bungarotoxin treated rats. J. Physiol. (Lond.) 458, 487–499 (1992).

    Article  CAS  Google Scholar 

  4. Plomp, J. J. et al. Acetylcholine release in myasthenia gravis: Regulation at single end-plate level. Ann. Neurol. 37, 627–636 (1995).

    Article  CAS  Google Scholar 

  5. Ohno, K. et al. Congenital myasthenic syndrome caused by decreased agonist binding affinity due to a mutation in the acetylcholine receptor ɛ subunit. Neuron 17, 157–170 (1996).

    Article  CAS  Google Scholar 

  6. Sakmann, B., Patlak, J. & Neher, E. Single acetylcholine-activated channels show burst-kinetics in the presence of desensitising concentrations of agonist. Nature 286, 71–73 ( 1980).

    Article  CAS  Google Scholar 

  7. Sine, S., Claudio, T. & Sigworth, F. Activation of Torpedo acetylcholine receptors expressed in mouse fibroblasts: single channel current kinetics reveal distinct agonist binding affinities. J. Gen. Physiol. 96, 395–437 (1990).

    Article  CAS  Google Scholar 

  8. Milone, M. et al. Mode switching kinetics produced by a naturally occurring mutation in the cytoplasmic loop of the human acetylcholine receptor ɛ subunit. Neuron 20, 575–588 (1998).

    Article  CAS  Google Scholar 

  9. Horn, R. & Lange, K. Estimating kinetic constants from single channel data. Biophys. J. 43, 207 –223 (1983).

    Article  CAS  Google Scholar 

  10. Qin, F., Auerbach, A. & Sachs, F. Estimating single-channel kinetic parameters from idealized patch clamp data containing missed events. Biophys. J. 70, 264–280 (1996).

    Article  CAS  Google Scholar 

  11. Magleby, K. L. in Myology 2nd edn (eds. Engel, A. G. & Franzini-Armstrong, C.) 442–463 (McGraw-Hill, New York, 1994).

    Google Scholar 

  12. Unwin, N. Nicotinic acetylcholine receptor at 9Å resolution. J. Mol. Biol. 229, 1101–1124 ( 1993).

    Article  CAS  Google Scholar 

  13. Charnet, P. et al. An open channel blocker interacts with adjacent turns of α-helices in the nicotinic acetylcholine receptor. Neuron 2, 87–95 (1990).

    Article  Google Scholar 

  14. Akabas, M., Kaufmann, C., Archdeacon, P. & Karlin, A. Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the α subunit. Neuron 13, 919–927 (1994).

    Article  CAS  Google Scholar 

  15. Blanton, M. & Cohen, J. Identifying the lipid-protein interface of the Torpedo nicotinic acetylcholine receptor: secondary structure implications. Biochemistry 33, 2859– 2872 (1994).

    Article  CAS  Google Scholar 

  16. Gorne-Tschelnoko, U., Strecker, A., Kaduk, C., Naumann, D. & Hucho, F. The transmembrane domains of the nicotinic acetylcholine receptor contain alpha helical and beta structures. EMBO J. 13, 338–341 (1994).

    Article  Google Scholar 

  17. Ortells, M. & Lunt, G. A mixed helix-beta-sheet model of the transmembrane region of the nicotinic acetylcholine receptor. Protein Eng. 9, 51–59 ( 1996).

    Article  CAS  Google Scholar 

  18. Fambrough, D. M., Engel, A. G. & Rosenberry, T. L. Acetylcholinesterase of human erythrocytes and neuromuscular junctions: Homologies revealed by monoclonal antibodies. Proc. Natl. Acad. Sci. USA 79, 1078–1082 (1982).

    Article  CAS  Google Scholar 

  19. Engel, A. G. in Myology: Basic and Clinical 2 edn (eds. Engel, A. G. & Franzini-Armstrong, C.) 822–831 (McGraw-Hill, New York, 1994).

    Google Scholar 

  20. Engel, A. G., Lindstrom, J. M., Lambert, E. H. & Lennon, V. A. Ultrastructural localization of the acetylcholine receptor in myasthenia gravis and in its experimental autoimmune model. Neurology 27, 307–315 (1977).

    Article  CAS  Google Scholar 

  21. Engel, A. G., Nagel, A., Walls, T. J., Harper, C. M. & Waisburg, H. A. Congenital myasthenic syndromes. I. Deficiency and short open-time of the acetylcholine receptor. Muscle Nerve 16, 1284–1292 (1993).

    Article  CAS  Google Scholar 

  22. Uchitel, O. et al. Congenital myasthenic syndromes. II. A syndrome attributed to abnormal interaction of acetylcholine with its receptor. Muscle Nerve 16, 1293–1301 ( 1993).

    Article  CAS  Google Scholar 

  23. Milone, M., Hutchinson, D. O. & Engel, A. G. Patch-clamp analysis of the properties of acetylcholine receptor channels at the normal human endplate. Muscle Nerve 17, 1364–1369 (1994).

    Article  CAS  Google Scholar 

  24. Colquhoun, D. & Sakmann, B. Fast events in single channel currents activated by acetylcholine and its analogues at the frog muscle end-plate. J. Physiol. (Lond.) 369, 501– 557 (1985).

    Article  CAS  Google Scholar 

  25. Sigworth, F. J. & Sine, S. M. Data transformation for improved display and fitting of single-channel dwell time histograms. Biophys. J. 52, 1047–1054 (1987).

    Article  CAS  Google Scholar 

  26. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual, 2 edn (Cold Spring Harbor Lab. Press, Plainview, New York, 1989 ).

    Google Scholar 

  27. Ohno, K. et al. Congenital myasthenic syndrome caused by prolonged acetylcholine receptor channel openings due to a mutation in the M2 domain of the ɛ subunit. Proc. Natl. Acad. Sci. USA 92, 758–762 (1995).

    Article  CAS  Google Scholar 

  28. Luther, M. A. et al. A muscle acetylcholine receptor is expressed in the human cerebellar medulloblastoma cell line TE671. J. Neurosci. 9, 1082–1096 (1989).

    Article  CAS  Google Scholar 

  29. Schoepfer, R., Luther, M. & Lindstrom, J. The human medulloblastoma cell line TE671 expresses a muscle-like acetylcholine receptor. Cloning of the alpha-subunit cDNA. FEBS Lett. 226, 235–240 (1988).

    Article  CAS  Google Scholar 

  30. Lee, B. S., Gunn, R. B. & Kopito, R. R. Functional differences among nonerythroid anion exchangers expressed in a transfected human cell line. J. Biol. Chem. 266, 11448–11454 (1991).

    CAS  PubMed  Google Scholar 

  31. Ohno, K. et al. Congenital myasthenic syndromes due to heteroallelic nonsense/missense mutations in the acetylcholine receptor ɛ subunit gene: identification and functional characterization of six new mutations. Hum. Mol. Genet. 6, 753–766 ( 1997).

    Article  CAS  Google Scholar 

  32. Bouzat, C., Bren, N. & Sine, S. M. Structural basis of different gating kinetics of fetal and adult acetylcholine receptors. Neuron 13, 1395–1402 (1994).

    Article  CAS  Google Scholar 

  33. Wang, H.-L. et al. Mutation in the M1 domain of the acetylcholine receptor α subunit decreases the rate of agonist dissociation. J. Gen. Physiol . 109, 757–766 ( 1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Sine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, HL., Milone, M., Ohno, K. et al. Acetylcholine receptor M3 domain: stereochemical and volume contributions to channel gating. Nat Neurosci 2, 226–233 (1999). https://doi.org/10.1038/6326

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/6326

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing