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manipulations9. In light of recent advances in 
the field of induced pluripotent stem cells10,11, 
the change of ependymal cell fate after injury 
or by molecular manipulation in vivo adds to 
the hope for future development of therapies 
for brain repair, especially in the aging brain, 
where the number of original neural stem 
cells drops substantially12.
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are represented in terms of many overlapping 
regions that occur at different scales. The use of 
overlapping regions complicates reconstruction 
because it requires the estimation of the relative 
contributions of the various regions to the final 
reconstructed image. On the other hand, the 
use of multiple scales enhances reconstruction 
performance because voxels convey contrast 
information at different scales. For example, 
peripheral voxels have larger spatial receptive 
fields than foveal voxels2,6 and therefore 
convey relatively more information about the 
contrast of large stimulus regions. By decoding 
contrast information at different scales, the 
reconstruction model maximizes the amount of 
information that is extracted from each voxel.

The work of Miyawaki et al.5 constitutes the 
latest development in a long series of visual 
decoding studies that have emerged over the 
years. Although reconstruction is qualitatively 
different from identification and classification, all 
decoding studies are similar in that they establish 
a systematic mapping between visual stimuli 
and brain activity (Fig. 2). In some studies5,7–10, 
the directionality of the mapping is from brain 
activity to the stimulus, and decoding is achieved 
by simply evaluating the mapping. In other 

in which each element was either gray 
(zero contrast) or filled with a flickering 
checkerboard pattern (full contrast). The 
authors presented a large number of these 
contrast-defined images to each subject while 
simultaneously recording fMRI signals from 
early visual areas (V1, V2 and V3). Next, they 
developed a reconstruction model and fit it 
to their data. In the first stage of the model, 
the authors used linear combinations of 
voxel responses to predict the amount of 
contrast in local regions of the stimulus. 
This technique works well because individual 
voxels in early visual areas reliably signal the 
amount of contrast in their spatial receptive 
fields2,4,6. In the second stage, they combined 
the predicted contrasts for the various 
stimulus regions into a single image that 
represents the estimated pattern of contrast 
the subject saw. Finally, the authors tested 
their reconstruction model using separate 
data that was reserved for this purpose. 
Reconstruction accuracy was quantified by 
correlating reconstructed images with the 
actual images seen by each subject.

An interesting aspect of the reconstruction 
model used by Miyawaki et al.5 is that images 

Can we decode a person’s brain activity to 
determine what that person is perceiving? 
Interest in this question has recently surged as a 
result of the success and popularity of applying 
multivariate classification techniques to 
functional magnetic resonance imaging (fMRI) 
data1. Standard fMRI analyses average activity 
across all voxels in a given region of interest 
and then correlate this activity with stimulus 
or task conditions. In contrast, classification 
techniques harness the entire pattern of activity 
observed across multiple voxels to predict 
which stimulus or task condition the subject 
is in. Classification techniques are limited, 
however, because they can only distinguish 
among a handful of predetermined states; for 
example, whether the subject saw a face or a 
house. Is it possible to overcome this limitation 
and obtain more detailed information about a 
person’s mental state?

Recent fMRI studies2,3 have advanced 
beyond classification by using brain activity 
measurements to identify, out of a set of 
potential images, the specific image that the 
subject saw. One study4 even showed that 
it is possible to reconstruct the actual image 
that was seen, rather than simply choosing 
the image from a known set. However, the 
resolution and accuracy of the reconstructions 
in this early study were somewhat low. A new 
study by Miyawaki et al.5 uses sophisticated 
decoding techniques to achieve high-quality 
image reconstructions (Fig. 1).

Miyawaki et al.5 began their experiment 
by constructing contrast-defined images4; 
these images consisted of a 10 × 10 grid, 

Figure 1  Schematic of visual image reconstruction performed by Miyawaki et al.5. Flickering 
checkerboard patterns arranged on a 10 × 10 grid were shown to each subject while fMRI signals 
were recorded from early visual cortex. The recorded signals were then used to reconstruct the 
images that the subjects had seen.

Contrast-defined image fMRI signals Reconstructed image
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demonstrated4. Thus, reconstruction of the 
subjective contents of human perception may 
soon be a reality.
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of natural images from fMRI measurements 
will likely require new decoding techniques 
and a better understanding of the statistical 
structure of natural images.

Brain decoding has many potential 
applications. For example, a recent study 
has shown that it is possible to control a 
prosthetic device using neural activity in 
motor cortex13. One enticing possibility 
suggested by the results of Miyawaki et al.5 
is to use fMRI measurements to reconstruct 
the contents of visual imagery or perhaps 
even dreams. Whether current decoding 
techniques can be successfully extended to 
these subjective perceptual states depends on 
whether the neural processes that mediate 
these states are similar to those involved 
in normal perception14. Current evidence 
suggests that this is more likely to be the case 
in higher visual areas15, but some success 
in reconstructing imagined stimuli from 
activity in lower visual areas has already been 

studies2–4, the directionality of the mapping is 
from the stimulus to brain activity, and decoding 
is achieved via an inversion procedure. Which 
of these strategies yields better performance 
depends on the situation and one strategy may 
be easier to implement than the other in some 
cases. Studies also vary with respect to the type 
of stimulus representation used. For example, 
some studies7,8 represent stimuli in terms of 
labels associated with different object categories, 
whereas Miyawaki et al.5 represent stimuli in 
terms of local contrast.

Although the reconstructions achieved 
by Miyawaki et al.5 are impressive, they are 
not perfect. One potential way to improve 
reconstruction accuracy would be to harness 
information conveyed by voxel responses 
in higher visual areas, such as V4. This is a 
challenging endeavor given that we have only 
a rudimentary understanding of how visual 
areas beyond V1 represent stimuli. Other ways 
to improve reconstruction accuracy include 
increasing the spatial resolution of fMRI 
signals and reducing measurement noise. Both 
of these strategies would effectively increase 
the amount of information available from 
early visual areas and would not require any 
change in the decoding method. Moreover, 
several MRI techniques for increasing spatial 
resolution and signal-to-noise ratio are 
already available, such as the use of ultra-high 
magnetic fields11 and parallel imaging.

Another avenue for future research is to 
increase the resolution of reconstructed 
images. However, the importance of resolution 
should not be overemphasized, as images with 
a resolution of just 32 × 32 can already convey 
a vast amount of information12. A more useful 
extension would be to expand the type of 
reconstructions that are possible. The simple 
artificial images used by Miyawaki et al.5  
are defined entirely by differences in local 
contrast, but this is not the case for the 
natural images that we see in daily life. At 
this time, no published studies have achieved 
reconstruction of natural images from fMRI 
measurements of brain activity. Direct 
application of the reconstruction model 
of Miyawaki et al.5 to activity evoked by a 
natural image would not produce satisfactory 
results, as reducing a natural image to a  
10 × 10 pattern of contrast produces an 
image that bears little resemblance to the 
original natural image. If the resolution of 
the Miyawaki et al.5 model were enhanced, the 
reconstructed images would probably capture 
many of the edges in natural images, but other 
important image features (such as surfaces) 
would be missed. Accurate reconstruction 
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Figure 2  All visual decoding studies2–5,7–10 establish a systematic mapping between visual stimuli 
and brain activity. Some studies learn a direct mapping from brain activity to the stimulus (arrows 
from right to left) and then perform decoding by simply evaluating the mapping. Other studies first 
learn a mapping from the stimulus to brain activity (arrows from left to right) and then perform 
decoding via an inversion procedure. Studies also differ in the type of stimulus representation that 
they use. Some studies operate on the raw stimulus (that is, pixel luminance values), whereas others 
operate on various transformations of the stimulus. These transformations include calculating the 
contrast in local regions of the stimulus, using labels that represent different object categories  
or grating orientations, and representing the stimulus in terms of a semantic basis set. Finally, 
studies differ in whether they classify, identify or reconstruct images. Note that ref. 4 evaluated  
two decoding methods, but this figure depicts only their ‘inverse reconstruction’ method).
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