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 manipulations9. In light of recent advances in 
the field of induced  pluripotent stem cells10,11, 
the change of ependymal cell fate after injury 
or by  molecular manipulation in vivo adds to 
the hope for future development of therapies 
for brain repair,  especially in the aging brain, 
where the  number of original neural stem 
cells drops  substantially12.
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are represented in terms of many  overlapping 
regions that occur at  different scales. The use of 
overlapping regions  complicates  reconstruction 
because it requires the  estimation of the  relative 
 contributions of the various regions to the final 
 reconstructed image. On the other hand, the 
use of  multiple scales enhances  reconstruction 
performance because voxels convey contrast 
 information at different scales. For example, 
 peripheral voxels have larger  spatial  receptive 
fields than foveal voxels2,6 and therefore 
 convey  relatively more  information about the 
 contrast of large  stimulus regions. By  decoding 
 contrast  information at  different scales, the 
 reconstruction model  maximizes the amount of 
information that is extracted from each voxel.

The work of Miyawaki et al.5 constitutes the 
latest development in a long series of visual 
decoding studies that have emerged over the 
years. Although reconstruction is qualitatively 
different from identification and  classification, all 
decoding studies are similar in that they  establish 
a systematic mapping between visual stimuli 
and brain activity (Fig. 2). In some studies5,7–10, 
the  directionality of the  mapping is from brain 
activity to the stimulus, and  decoding is achieved 
by simply evaluating the mapping. In other 

in which each element was either gray 
(zero  contrast) or filled with a flickering 
 checkerboard  pattern (full contrast). The 
authors presented a large  number of these 
contrast-defined images to each subject while 
simultaneously  recording fMRI  signals from 
early visual areas (V1, V2 and V3). Next, they 
developed a  reconstruction model and fit it 
to their data. In the first stage of the model, 
the authors used linear  combinations of 
voxel responses to predict the amount of 
contrast in local regions of the  stimulus. 
This  technique works well because individual 
voxels in early visual areas reliably signal the 
amount of  contrast in their spatial receptive 
fields2,4,6. In the  second stage, they  combined 
the  predicted  contrasts for the  various 
 stimulus regions into a single image that 
represents the estimated  pattern of  contrast 
the subject saw. Finally, the authors tested 
their reconstruction model using  separate 
data that was reserved for this  purpose. 
Reconstruction accuracy was  quantified by 
correlating reconstructed images with the 
actual images seen by each subject.

An interesting aspect of the  reconstruction 
model used by Miyawaki et al.5 is that images 

Can we decode a person’s brain activity to 
 determine what that person is  perceiving? 
Interest in this question has recently surged as a 
result of the success and  popularity of  applying 
multivariate classification  techniques to 
 functional magnetic  resonance  imaging (fMRI) 
data1. Standard fMRI  analyses  average activity 
across all voxels in a given region of interest 
and then correlate this activity with stimulus 
or task conditions. In contrast,  classification 
techniques harness the entire  pattern of  activity 
observed across multiple voxels to predict 
which stimulus or task  condition the subject 
is in. Classification  techniques are limited, 
 however, because they can only distinguish 
among a handful of  predetermined states; for 
example, whether the subject saw a face or a 
house. Is it possible to overcome this limitation 
and obtain more detailed information about a 
person’s mental state?

Recent fMRI studies2,3 have advanced 
beyond classification by using brain  activity 
 measurements to identify, out of a set of 
 potential images, the specific image that the 
subject saw. One study4 even showed that 
it is possible to reconstruct the actual image 
that was seen, rather than simply choosing 
the image from a known set. However, the 
 resolution and accuracy of the  reconstructions 
in this early study were somewhat low. A new 
study by Miyawaki et al.5 uses sophisticated 
decoding techniques to achieve high-quality 
image reconstructions (Fig. 1).

Miyawaki et al.5 began their  experiment 
by constructing contrast-defined images4; 
these images consisted of a 10 × 10 grid, 

Figure 1  Schematic of visual image reconstruction performed by Miyawaki et al.5. Flickering 
checkerboard patterns arranged on a 10 × 10 grid were shown to each subject while fMRI signals 
were recorded from early visual cortex. The recorded signals were then used to reconstruct the 
images that the subjects had seen.

Contrast-defined image fMRI signals Reconstructed image
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 demonstrated4. Thus, reconstruction of the 
subjective contents of human perception may 
soon be a reality.
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of  natural images from fMRI measurements 
will  likely require new decoding techniques 
and a  better understanding of the statistical 
 structure of natural images.

Brain decoding has many potential 
 applications. For example, a recent study 
has shown that it is possible to control a 
 prosthetic device using neural activity in 
motor  cortex13. One enticing possibility 
 suggested by the results of Miyawaki et al.5 
is to use fMRI  measurements to reconstruct 
the contents of visual  imagery or perhaps 
even dreams. Whether current  decoding 
techniques can be successfully extended to 
these subjective  perceptual states depends on 
whether the  neural processes that  mediate 
these states are similar to those involved 
in normal  perception14. Current evidence 
 suggests that this is more likely to be the case 
in higher visual areas15, but some  success 
in reconstructing imagined stimuli from 
 activity in lower visual areas has already been 

studies2–4, the  directionality of the  mapping is 
from the stimulus to brain  activity, and  decoding 
is achieved via an  inversion  procedure. Which 
of these  strategies yields  better performance 
depends on the  situation and one strategy may 
be easier to implement than the other in some 
cases. Studies also vary with respect to the type 
of stimulus  representation used. For  example, 
some studies7,8  represent  stimuli in terms of 
labels associated with  different object  categories, 
whereas Miyawaki et al.5 represent stimuli in 
terms of local  contrast.

Although the reconstructions achieved 
by Miyawaki et al.5 are impressive, they are 
not perfect. One potential way to improve 
 reconstruction accuracy would be to harness 
information conveyed by voxel responses 
in higher visual areas, such as V4. This is a 
 challenging endeavor given that we have only 
a rudimentary understanding of how visual 
areas beyond V1 represent stimuli. Other ways 
to improve reconstruction  accuracy include 
increasing the spatial resolution of fMRI 
 signals and reducing  measurement noise. Both 
of these  strategies would  effectively increase 
the amount of  information  available from 
early visual areas and would not require any 
change in the  decoding method. Moreover, 
several MRI techniques for increasing  spatial 
resolution and signal-to-noise ratio are 
already available, such as the use of ultra-high 
 magnetic fields11 and parallel imaging.

Another avenue for future research is to 
increase the resolution of  reconstructed 
images. However, the importance of  resolution 
should not be overemphasized, as images with 
a  resolution of just 32 × 32 can already  convey 
a vast amount of  information12. A more  useful 
extension would be to expand the type of 
 reconstructions that are  possible. The  simple 
artificial images used by Miyawaki et al.5  
are defined entirely by  differences in local 
 contrast, but this is not the case for the 
 natural images that we see in daily life. At 
this time, no  published studies have achieved 
 reconstruction of  natural images from fMRI 
measurements of brain  activity. Direct 
 application of the  reconstruction model 
of Miyawaki et al.5 to activity evoked by a 
 natural image would not produce  satisfactory 
results, as  reducing a  natural image to a  
10 × 10  pattern of contrast produces an 
image that bears little  resemblance to the 
original  natural image. If the resolution of 
the Miyawaki et al.5 model were enhanced, the 
reconstructed images would probably capture 
many of the edges in natural images, but other 
important image features (such as surfaces) 
would be missed. Accurate  reconstruction 
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Figure 2  All visual decoding studies2–5,7–10 establish a systematic mapping between visual stimuli 
and brain activity. Some studies learn a direct mapping from brain activity to the stimulus (arrows 
from right to left) and then perform decoding by simply evaluating the mapping. Other studies first 
learn a mapping from the stimulus to brain activity (arrows from left to right) and then perform 
decoding via an inversion procedure. Studies also differ in the type of stimulus representation that 
they use. Some studies operate on the raw stimulus (that is, pixel luminance values), whereas others 
operate on various transformations of the stimulus. These transformations include calculating the 
contrast in local regions of the stimulus, using labels that represent different object categories  
or grating orientations, and representing the stimulus in terms of a semantic basis set. Finally, 
studies differ in whether they classify, identify or reconstruct images. Note that ref. 4 evaluated  
two decoding methods, but this figure depicts only their ‘inverse reconstruction’ method).
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