Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integration of diverse information in working memory within the frontal lobe

Abstract

Ability to integrate diverse forms of information in current thought, or working memory, is essential for human reasoning and problem solving. We used functional imaging to identify brain regions preferentially involved in maintaining integrated versus unintegrated information in working memory. For equal amounts of verbal and spatial information, activation of prefrontal cortex was greater for maintaining integrated rather than unintegrated representations. Posterior brain regions showed the opposite pattern. These results demonstrate frontal-lobe specialization in maintaining working-memory representations that integrate verbal and spatial information. The role of prefrontal cortex in integrating multiple forms of information in working memory may underlie its unique contribution to high-level cognition that demands flexible mental representations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatial and verbal trial types.
Figure 2: Bound and separate trial types.
Figure 3: Composite activation maps of spatial and verbal conditions.
Figure 4: Difference maps of bound versus separate scans.
Figure 5: Activation in the right frontal cortex in six subjects.
Figure 6: Difference maps of bound or separate condition versus spatial (SPA) and verbal (VER) conditions.

Similar content being viewed by others

References

  1. Baker, S. C., Frith, C. D., Frackowiak, R. S. J. & Dolan, R. J. Active representation of shape and spatial location in man. Cereb. Cortex 6, 612–619 ( 1996).

    Article  CAS  Google Scholar 

  2. Braver, T. S. et al. A parametric study of prefrontal cortex involvement in human working memory. Neuroimage 5, 49– 62 (1997).

    Article  CAS  Google Scholar 

  3. Cohen, J. D. et al. Activation of prefrontal cortex in a non-spatial working memory task with functional MRI. Hum. Brain Mapp. 1, 293–304 (1994).

    Article  CAS  Google Scholar 

  4. Cohen, J. D. et al. Temporal dynamics of brain activation during a working memory task. Nature 386, 604–607 (1997).

    Article  CAS  Google Scholar 

  5. Courtney, S. M., Ungerleider, L. G., Keil, K. & Haxby, J. V. Object and spatial visual working memory activate separate neural systems in human cortex. Cereb. Cortex 6, 39– 49 (1996).

    Article  CAS  Google Scholar 

  6. Courtney, S. M., Ungerleider, L. G., Keil, K. & Haxby, J. V. Transient and sustained activity in a distributed system for human working memory. Nature 386, 608– 611 (1997).

    Article  CAS  Google Scholar 

  7. Courtney, S. M. et al. An area specialized for spatial working memory in human frontal cortex. Science 279, 1347– 1351 (1998).

    Article  CAS  Google Scholar 

  8. D'Esposito, M. et al. The neural basis of the central executive system of working memory. Nature 378, 279– 281 (1995).

    Article  CAS  Google Scholar 

  9. Fiez, J. A. et al. A positron emission tomography study of the short-term maintenance of verbal information. J. Neurosci. 16, 808–822 (1996).

    Article  CAS  Google Scholar 

  10. Jonides, J. et al. Spatial working memory in humans as revealed by PET. Nature 363, 623–625 ( 1993).

    Article  CAS  Google Scholar 

  11. Jonides, J. et al. Verbal working memory load affects regional brain activation as measured by PET. J. Cogn. Neurosci. 9, 462–475 (1997).

    Article  CAS  Google Scholar 

  12. Jonides, J., Smith, E. E., Marshuetz, C. & Koeppe, R. A. Inhibition in verbal working memory revealed by brain activation. Proc. Natl. Acad. Sci. USA 95, 8410– 8413 (1998).

    Article  CAS  Google Scholar 

  13. McCarthy, G. M. et al. Functional magnetic resonance imaging of human prefrontal cortex activation during a spatial working memory task. Proc. Natl. Acad. Sci. USA 91, 8690–8694 (1994).

    Article  CAS  Google Scholar 

  14. McCarthy, G. M. et al. Activation of human prefrontal cortex during spatial and nonspatial working memory tasks measured by functional MRI. Cereb. Cortex 6, 600–611 ( 1996).

    Article  CAS  Google Scholar 

  15. Owen, A. M., Evans, A. C. & Petrides, M. Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: a positron emission tomography study. Cereb. Cortex 6, 31– 38 (1996).

    Article  CAS  Google Scholar 

  16. Owen, A. M. et al. Functional organization of spatial and nonspatial working memory processing within the human lateral frontal cortex. Proc. Natl. Acad. Sci. USA 95, 7721–7726 (1998).

    Article  CAS  Google Scholar 

  17. Paulesu, E., Frith, C. D. & Frackowiak, R. S. J. The neural correlates of the verbal component of working memory. Nature 362, 342– 345 (1993).

    Article  CAS  Google Scholar 

  18. Petrides, M., Alivisatos, B., Meyer, E. & Evans, A. C. Functional activation of the human frontal cortex during the performance of verbal working memory tasks. Proc. Natl. Acad. Sci. USA 90, 878–882 (1993).

    Article  CAS  Google Scholar 

  19. Petrides, M., Alivisatos, B., Evans, A. C. & Meyer, E. Dissociation of human mid-dorsolateral from posterior dorsolateral frontal cortex in memory processing. Proc. Natl. Acad. Sci. USA 90, 873–877 (1993).

    Article  CAS  Google Scholar 

  20. Rypma, B., Prabhakaran, V., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. E. Load-dependent roles of frontal brain regions in the maintenance of working memory. Neuroimage 9, 216–226 ( 1999).

    Article  CAS  Google Scholar 

  21. Rypma, B. & D'Esposito, M. The roles of prefrontal brain regions in components of working memory: effects of memory load and individual differences. Proc. Natl. Acad. Sci. USA 96, 6558–6563 (1999).

    Article  CAS  Google Scholar 

  22. Smith, E. E. et al. Spatial versus object working memory: PET investigations. J. Cogn. Neurosci. 7, 337– 356 (1995).

    Article  CAS  Google Scholar 

  23. Smith, E. E., Jonides, J. & Koeppe, R. A. Dissociating verbal and spatial working memory using PET. Cereb. Cortex 6, 11– 20 (1996).

    Article  CAS  Google Scholar 

  24. Smith, E. E., Jonides, J., Marshuetz, C. & Koeppe, R. A. Components of verbal working memory: Evidence from neuroimaging. Proc. Natl. Acad. Sci. USA 95, 876– 882 (1998).

    Article  CAS  Google Scholar 

  25. Smith, E. E. & Jonides, J. Storage and executive processes in the frontal lobes. Science 283, 1657– 1661 (1999).

    Article  CAS  Google Scholar 

  26. Smith, E. E. & Jonides, J. Neuroimaging analyses of human working memory. Proc. Natl. Acad. Sci. USA 95, 12061 –12068 (1999).

    Article  Google Scholar 

  27. Ungerleider, L. G. & Mishkin, M. in Analysis of Visual Behavior (eds. Ingle, D. J., Goodale, M. A. & Mansfield, R. J. W.) 549–586 (MIT Press, Cambridge, Massachusetts, 1982).

    Google Scholar 

  28. Wilson, F. A. W., Fraser, A. W., O Scalaidhe, S. P. & Goldman-Rakic, P. S. Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260, 1955– 1957 (1993).

    Article  CAS  Google Scholar 

  29. Zeki, S. & Shipp, S. The functional logic of cortical connections. Nature 335, 311–317 (1988).

    Article  CAS  Google Scholar 

  30. Rainer, G., Asaad, W. F. & Miller, E. K. Memory fields of neurons in the primate prefrontal cortex. Proc. Natl. Acad. Sci. USA 95, 15008 –15013 (1998).

    Article  CAS  Google Scholar 

  31. Rainer, G., Assad, W. F. & Miller, E. K. Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature 393, 577–579 (1998).

    Article  CAS  Google Scholar 

  32. Rao, S. C., Rainer, G. & Miller, E. K. Integration of what and where in the primate prefrontal cortex. Science 276, 821– 824 (1997).

    Article  CAS  Google Scholar 

  33. Fuster, J. M. The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe (Lippincott-Raven, New York, 1997).

    Google Scholar 

  34. Fuster, J. M., Bauer, R. H., & Jervey, J. P. Cellular discharge in the dorsolateral prefrontal cortex of the monkey in cognitive tasks. Exp. Neurol. 77, 679–694 (1982).

    Article  CAS  Google Scholar 

  35. D'Esposito, M., Aguirre, G. K. & Zarahn, E. Functional MRI studies of spatial and non-spatial working memory. Cognit. Brain Res. 7, 1– 13 (1998).

    Article  CAS  Google Scholar 

  36. Owen, A. M. The functional organization of working memory processes within human lateral cortex: the contribution of functional neuroimaging. Eur. J. Neurosci. 9, 1329–1339 ( 1997).

    Article  CAS  Google Scholar 

  37. Baddeley, A. Working Memory (Oxford Univ. Press, New York, 1986).

    Google Scholar 

  38. Logie, R. H. & Denis, M. Mental Images in Human Cognition (Elsevier Science, New York, 1991).

    Google Scholar 

  39. Luck, S. J. & Vogel, E. K. The capacity of visual working memory for features and conjunctions. Nature 390, 279–281 (1997).

    Article  CAS  Google Scholar 

  40. Prabhakaran, V., Smith, J. A. L., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. E. Neural substrates of fluid reasoning: An fMRI study of neocortical activation during performance of the Raven's Progressive Matrices Test. Cognit. Psychol. 33, 43–63 (1997).

    Article  CAS  Google Scholar 

  41. Baker, S. C. et al. Neural systems engaged by planning: a PET study of the Tower of London task. Neuropsychologia 34, 515 –526 (1996).

    Article  CAS  Google Scholar 

  42. Duncan, J., Burgess, P. & Emslie, H. Fluid intelligence after frontal lobe lesions. Neuropsychologia 33, 261–268 (1995).

    Article  CAS  Google Scholar 

  43. Waltz, J. A. et al. A system for relational reasoning in human prefrontal cortex. Psychol. Sci. 10, 119– 125 (1999).

    Article  Google Scholar 

  44. Goel, V., Gold, B., Kapur, S. & Houle, S. The seats of reason? An imaging study of deductive and inductive reasoning. Neuroreport 8, 1305–1310 ( 1997).

    Article  CAS  Google Scholar 

  45. Koechlin, E., Basso, G., Pietrini, P., Panzer, S. & Grafman, J. The role of anterior prefrontal cortex in human cognition. Nature 399, 148–151 (1999).

    Article  CAS  Google Scholar 

  46. Glover, G. H. & Lai, S. Self-navigated spiral fMRI: interleaved versus single-shot. Magn. Reson. Med. 39, 361–368 (1995).

    Article  Google Scholar 

  47. Talairach, J. & Tourneaux, P. Co-Planar Stereotaxic Atlas of the Human Brain (Thieme, Stuttgart, 1988).

    Google Scholar 

  48. Friston, K. J., Frith, C. D., Liddle, P. F. & Frackowiak, R. S. J. Comparing functional (PET) images: The assessment of significant change. J. Cereb. Blood Flow Metab. 11, 690– 699 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institute on Aging and the National Center for Research Resources. V.P. is supported by a NRSA training grant awarded by the National Institutes of Health. The authors thank Mark D'Esposito for comments on earlier drafts of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Prabhakaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prabhakaran, V., Narayanan, K., Zhao, Z. et al. Integration of diverse information in working memory within the frontal lobe. Nat Neurosci 3, 85–90 (2000). https://doi.org/10.1038/71156

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/71156

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing