Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A fast pathway for fear in human amygdala

Abstract

A fast, subcortical pathway to the amygdala is thought to have evolved to enable rapid detection of threat. This pathway's existence is fundamental for understanding nonconscious emotional responses, but has been challenged as a result of a lack of evidence for short-latency fear-related responses in primate amygdala, including humans. We recorded human intracranial electrophysiological data and found fast amygdala responses, beginning 74-ms post-stimulus onset, to fearful, but not neutral or happy, facial expressions. These responses had considerably shorter latency than fear responses that we observed in visual cortex. Notably, fast amygdala responses were limited to low spatial frequency components of fearful faces, as predicted by magnocellular inputs to amygdala. Furthermore, fast amygdala responses were not evoked by photographs of arousing scenes, which is indicative of selective early reactivity to socially relevant visual information conveyed by fearful faces. These data therefore support the existence of a phylogenetically old subcortical pathway providing fast, but coarse, threat-related signals to human amygdala.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental face stimuli.
Figure 2: Fast-latency human amygdala responses to BSF and LSF fearful faces.
Figure 3: Amygdala iERPs to fearful faces originate from lateral amygdala.
Figure 4: Fast responses to fear are not observed in fusiform gyrus.
Figure 5: Fast-latency amygdala responses are not evoked by complex emotional pictures.

Similar content being viewed by others

References

  1. LeDoux, J.E. The Emotional Brain (Simon & Schuster, New York, 1996).

  2. Day-Brown, J.D., Wei, H., Chomsung, R.D., Petry, H.M. & Bickford, M.E. Pulvinar projections to the striatum and amygdala in the tree shrew. Front. Neuroanat. 4, 143 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tamietto, M. & de Gelder, B. Neural bases of the non-conscious perception of emotional signals. Nat. Rev. Neurosci. 11, 697–709 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Johnson, M.H. Subcortical face processing. Nat. Rev. Neurosci. 6, 766–774 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Garrido, M.I., Barnes, G.R., Sahani, M. & Dolan, R.J. Functional evidence for a dual route to amygdala. Curr. Biol. 22, 129–134 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Morris, J.S., Ohman, A. & Dolan, R.J. Conscious and unconscious emotional learning in the human amygdala. Nature 393, 467–470 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Whalen, P.J. et al. Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. J. Neurosci. 18, 411–418 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pegna, A.J., Khateb, A., Lazeyras, F. & Seghier, M.L. Discriminating emotional faces without primary visual cortices involves the right amygdala. Nat. Neurosci. 8, 24–25 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. Morris, J.S., DeGelder, B., Weiskrantz, L. & Dolan, R.J. Differential extrageniculostriate and amygdala responses to presentation of emotional faces in a cortically blind field. Brain 124, 1241–1252 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Tamietto, M., Pullens, P., de Gelder, B., Weiskrantz, L. & Goebel, R. Subcortical connections to human amygdala and changes following destruction of the visual cortex. Curr. Biol. 22, 1449–1455 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Oya, H., Kawasaki, H., Howard, M.A. 3rd & Adolphs, R. Electrophysiological responses in the human amygdala discriminate emotion categories of complex visual stimuli. J. Neurosci. 22, 9502–9512 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Krolak-Salmon, P., Henaff, M.A., Vighetto, A., Bertrand, O. & Mauguiere, F. Early amygdala reaction to fear spreading in occipital, temporal, and frontal cortex: a depth electrode ERP study in human. Neuron 42, 665–676 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Naccache, L. et al. A direct intracranial record of emotions evoked by subliminal words. Proc. Natl. Acad. Sci. USA 102, 7713–7717 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brazdil, M. et al. Neural correlates of affective picture processing—a depth ERP study. NeuroImage 47, 376–383 (2009).

    Article  PubMed  Google Scholar 

  15. Pessoa, L. & Adolphs, R. Emotion processing and the amygdala: from a 'low road' to 'many roads' of evaluating biological significance. Nat. Rev. Neurosci. 11, 773–783 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vuilleumier, P. How brains beware: neural mechanisms of emotional attention. Trends Cogn. Sci. 9, 585 (2005).

    Article  PubMed  Google Scholar 

  17. Schiller, P.H., Malpeli, J.G. & Schein, S.J. Composition of geniculostriate input to superior colliculus of the rhesus monkey. J. Neurophysiol. 42, 1124–1133 (1979).

    Article  CAS  PubMed  Google Scholar 

  18. Berson, D.M. Retinal and cortical inputs to cat superior colliculus: composition, convergence and laminar specificity. Prog. Brain Res. 75, 17–26 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Vuilleumier, P., Armony, J.L., Driver, J. & Dolan, R.J. Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nat. Neurosci. 6, 624–631 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Carretié, L., Hinojosa, J.A., López-Martín, S. & Tapia, M. An electrophysiological study on the interaction between emotional content and spatial frequency of visual stimuli. Neuropsychologia 45, 1187–1195 (2007).

    Article  PubMed  Google Scholar 

  21. Inagaki, M. & Fujita, I. Reference frames for spatial frequency in face representation differ in the temporal visual cortex and amygdala. J. Neurosci. 31, 10371–10379 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Seligman, M.E.P. Phobias and preparedness. Behav. Ther. 2, 307–320 (1971).

    Article  Google Scholar 

  23. Maris, E. & Oostenveld, R. Nonparametric statistical testing of EEG and MEG data. J. Neurosci. Methods 164, 177–190 (2007).

    Article  PubMed  Google Scholar 

  24. Aggleton, J., Burton, M. & Passingham, R. Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta). Brain Res. 190, 347–368 (1980).

    Article  CAS  PubMed  Google Scholar 

  25. Stefanacci, L. & Amaral, D.G. Topographic organization of cortical inputs to the lateral nucleus of the macaque monkey amygdala: a retrograde tracing study. J. Comp. Neurol. 421, 52–79 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Amaral, D.G. & Insausti, R. Retrograde transport of D-[3H]-aspartate injected into the monkey amygdaloid complex. Exp. Brain Res. 88, 375–388 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Kanwisher, N., McDermott, J. & Chun, M.M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Eimer, M. The face-sensitive N170 component of the event-related brain potential. in The Oxford Handbook of Face Perception (eds. Calder, A., Rhodes, G., Johnson M. & Haxby, J.) 329–344 (Oxford University Press, 2011).

  29. Vuilleumier, P. & Pourtois, G. Distributed and interactive brain mechanisms during emotion face perception: evidence from functional neuroimaging. Neuropsychologia 45, 174–194 (2007).

    Article  PubMed  Google Scholar 

  30. Livingstone, M. & Hubel, D. Segregation of form, color, movement, and depth: anatomy, physiology and perception. Science 240, 740–749 (1988).

    Article  CAS  PubMed  Google Scholar 

  31. Merigan, W.H. & Maunsell, J.H.R. How parallel are the primate visual pathways? Annu. Rev. Neurosci. 16, 369–402 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, S. et al. Neurons in the human amygdala selective for perceived emotion. Proc. Natl. Acad. Sci. USA 111, E3110–E3119 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nguyen, M.N. et al. Neuronal responses to face-like stimuli in the monkey pulvinar. Eur. J. Neurosci. 37, 35–51 (2013).

    Article  PubMed  Google Scholar 

  34. Gothard, K.M., Battaglia, F.P., Erickson, C.A., Spitler, K.M. & Amaral, D.G. Neural responses to facial expression and face identity in the monkey amygdala. J. Neurophysiol. 97, 1671–1683 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Sato, W. et al. Rapid amygdala gamma oscillations in response to fearful facial expressions. Neuropsychologia 49, 612–617 (2011).

    Article  PubMed  Google Scholar 

  36. Pourtois, G., Spinelli, L., Seeck, M. & Vuilleumier, P. Temporal precedence of emotion over attention modulations in the lateral amygdala: Intracranial ERP evidence from a patient with temporal lobe epilepsy. Cogn. Affect. Behav. Neurosci. 10, 83–93 (2010).

    Article  PubMed  Google Scholar 

  37. Rodriguez Merzagora, A. et al. Repeated stimuli elicit diminished high-gamma electrocorticographic responses. NeuroImage 85, 844–852 (2014).

    Article  PubMed  Google Scholar 

  38. Dimberg, U. & Öhman, A. Behold the wrath: Psychophysiological responses to facial stimuli. Motiv. Emotion 20, 149–182 (1996).

    Article  Google Scholar 

  39. Anderson, A.K., Christoff, K., Panitz, D., De Rosa, E. & Gabrieli, J.D.E. Neural correlates of the automatic processing of threat facial signals. J. Neurosci. 23, 5627–5633 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Öhman, A. Automaticity and the amygdala: nonconscious responses to emotional faces. Curr. Dir. Psychol. Sci. 11, 62–66 (2002).

    Article  Google Scholar 

  41. Kling, A.S. & Brothers, L.A. The amygdala and social behavior. in The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction (ed. Aggleton, J.P.) 353–377 (Wiley-Liss, 1992).

  42. Ohman, A. & Mineka, S. Fears, phobias and preparedness: toward an evolved module of fear and fear learning. Psychol. Rev. 108, 483–522 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Pessoa, L., McKenna, M., Gutierrez, E. & Ungerleider, L. Neural processing of emotional faces requires attention. Proc. Natl. Acad. Sci. USA 99, 11458–11463 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Moors, A. & De Houwer, J. Automaticity: a theoretical and conceptual analysis. Psychol. Bull. 132, 297 (2006).

    Article  PubMed  Google Scholar 

  45. Kveraga, K., Boshyan, J. & Bar, M. Magnocellular projections as the trigger of top-down facilitation in recognition. J. Neurosci. 27, 13232–13240 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barbas, H. Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices. Brain Res. Bull. 52, 319–330 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Kawasaki, H. et al. Single-neuron responses to emotional visual stimuli recorded in human ventral prefrontal cortex. Nat. Neurosci. 4, 15–16 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Etkin, A. et al. Individual differences in trait anxiety predict the response of the basolateral amygdala to unconsciously processed fearful faces. Neuron 44, 1043–1055 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Rauch, S.L. et al. Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: a functional MRI study. Biol. Psychiatry 47, 769–776 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Sheline, Y.I. et al. Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol. Psychiatry 50, 651–658 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Amunts, K. et al. Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat. Embryol. (Berl) 210, 343–352 (2005).

    Article  CAS  Google Scholar 

  52. Ahrens, J., Geveci, B. & Law, C. ParaView: An end-user tool for large-data visualization. in The Visualization Handbook (eds. Hansen, C.D. & Johnson, C.R.) 717 (Citeseer, 2005).

  53. Lundqvist, D., Flykt, A. & Öhman, A. The Karolinska Directed Emotional Faces–KDEF (Department of Clinical Neuroscience, Psychology Section, Karolinska Institutet, 1998).

  54. Olszanowski, M., Pochwatko, G., Kukliński, K., Ścibor-Rylski, M. & Ohme, R. Warsaw set of emotional facial expression pictures—validation study of facial display photographs. Front. Psychol. 5, 1516 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Langner, O., Dotsch, R., Bijlstra, G., Wigboldus, D.H.J., Hawk, S.T. & van Knippenberg, A. Presentation and validation of the Radboud Faces Database. Cogn. Emot. 24, 1377–1388 (2010).

    Article  Google Scholar 

  56. Schyns, P.G. & Oliva, A. Dr. Angry and Mr. Smile: When categorization flexibly modifies the perception of faces in rapid visual presentations. Cognition 69, 243–265 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Tanner, D., Morgan-Short, K. & Luck, S.J. How inappropriate high-pass filters can produce artifactual effects and incorrect conclusions in ERP studies of language and cognition. Psychophysiology 52, 997–1009 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tadel, F., Baillet, S., Mosher, J.C., Pantazis, D. & Leahy, R.M. Brainstorm: a user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 879716 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gramfort, A., Papadopoulo, T., Olivi, E. & Clerc, M. OpenMEEG: opensource software for quasistatic bioelectromagnetics. Biomed. Eng. Online 9, 45 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hauk, O. Keep it simple: a case for using classical minimum norm estimation in the analysis of EEG and MEG data. Neuroimage 21, 1612–1621 (2004).

    Article  PubMed  Google Scholar 

  61. Collins, D.L. et al. Design and construction of a realistic digital brain phantom. IEEE Trans. Med. Imaging 17, 463–468 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Lachaux, J.P., Rudrauf, D. & Kahane, P. Intracranial EEG and human brain mapping. J. Physiol. Paris 97, 613–628 (2003).

    Article  PubMed  Google Scholar 

  63. Lang, P.J., Bradley, M.M. & Cuthbert, B.N. International affective picture system (IAPS): affective ratings of pictures and instruction manual (Technical Report A-6) (University of Florida, 2005).

Download references

Acknowledgements

We thank the electroencephalography technicians at the Hospital Ruber Internacional. This work was supported by Project grant SAF2011-27766 from the Spanish Ministry of Science and Education and Marie Curie Career Integration Fellowship (FP7-PEOPLE-2011-CIG 304248) to B.A.S., a PICATA fellowship of CEI Moncloa (UCM-UPM) to C.M.-B., and a Ramón y Cajal fellowship (RYC-2009-04974) to S.M. This work was supported by Project grant SAF2011-27766 from the Spanish Ministry of Science and Education, Marie Curie Career Integration Fellowship (FP7-PEOPLE-2011-CIG 304248), and BIAL Foundation Grant 119/12 to B.A.S.

Author information

Authors and Affiliations

Authors

Contributions

C.M.-B., S.M., P.V., A.G.-N. and B.A.S. designed the experiments. C.M.-B., F.L.-S. and R.T. collected data and C.M.-B., S.M. and B.A.S. performed analyses. R.T. and A.G.-N. monitored patients and performed clinical evaluation. R.M.-A. performed surgical electrode implantation. Y.H.M. designed and performed electrode contact localization. B.A.S., C.M.-B., S.M. and P.V. wrote the paper with input from all of the other authors.

Corresponding author

Correspondence to Bryan A Strange.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Structural MRIs.

Coronal and transverse sections of pre-electrode insertion T1 weighted MRIs, illustrating radiologically normal amygdala in the 10 patients for which iERPs are presented. Red arrows indicate the amygdala in which stereotactic electrodes were inserted. L/R: Left/Right.

Supplementary Figure 2 Electrode contact localization in the amygdala for all patients.

Post-operative CT images from each patient have been coregistered with their corresponding pre-operative MRI scan and superimposed to display amygdala contacts in transverse section. In the case of bilateral amygdala implantation, transverse sections are slightly rotated to enable viewing of both left and right contacts in the same cut. Electrode contacts included in each patient’s averaged iERP are indicated in red. Note that post-operative CT quality for Patient 05 precluded adequate coregistration, thus for this patient electrode contacts were localised on post-operative MRI scan (electrode trajectory is visible in the left temporal lobe and correctly targets the amygdala on that side).

Supplementary Figure 3 Amygdala iERPs according to electrode laterality (experiment 1).

Averaged iERPs from 10 amygdalae of 8 patients (total of 26 contacts) to (a) all spatial frequency and (b) broadband and LSF faces are plotted for fearful, happy, and neutral faces separately for both pools of left (n = 6; seventeen contacts) and right (n = 4; nine contacts) amygdala electrodes.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Tables 1–15 (PDF 1439 kb)

Supplementary Methods Checklist

(PDF 1227 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méndez-Bértolo, C., Moratti, S., Toledano, R. et al. A fast pathway for fear in human amygdala. Nat Neurosci 19, 1041–1049 (2016). https://doi.org/10.1038/nn.4324

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4324

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing