Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Parvalbumin interneurons provide grid cell–driven recurrent inhibition in the medial entorhinal cortex

Abstract

Grid cells in the medial entorhinal cortex (MEC) generate metric spatial representations. Recent attractor-network models suggest an essential role for GABAergic interneurons in the emergence of the grid-cell firing pattern through recurrent inhibition dependent on grid-cell phase. To test this hypothesis, we studied identified parvalbumin-expressing (PV+) interneurons that are the most likely candidate for providing this recurrent inhibition onto grid cells. Using optogenetics and tetrode recordings in mice, we found that PV+ interneurons exhibited high firing rates, low spatial sparsity and no spatial periodicity. PV+ interneurons inhibited all functionally defined cell types in the MEC and were in turn recruited preferentially by grid cells. To our surprise, we found that individual PV+ interneurons received input from grid cells with various phases, which most likely accounts for the broadly tuned spatial firing activity of PV+ interneurons. Our data argue against the notion that PV+ interneurons provide phase-dependent recurrent inhibition and challenge recent attractor-network models of grid cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell type–specific expression of ChR2-mCherry in PV+ interneurons of the MEC.
Figure 2: Identification of PV+ interneurons in PV-Cre mice.
Figure 3: Firing characteristics of PV+ interneurons.
Figure 4: Absence of grid-cell pattern in the firing of PV+ interneurons.
Figure 5: Inhibition of spatially selective cells by PV+ interneurons.
Figure 6: Theta phase–specific stimulation of PV+ interneurons inhibits MEC neurons without affecting their spatial selectivity.
Figure 7: Connectivity between excitatory cells and PV+ interneurons.

Similar content being viewed by others

References

  1. Hafting, T., Fyhn, M., Molden, S., Moser, M.-B. & Moser, E.I. Microstructure of aspatial map in the entorhinal cortex. Nature 436, 801–806 (2005).

    CAS  PubMed  Google Scholar 

  2. Taube, J.S., Muller, R.U. & Ranck, J. Jr. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci. 10, 420–435 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Oxford University Press, Oxford, 1978).

  4. Morris, R.G., Garrud, P., Rawlins, J.N. & O'Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 (1982).

    CAS  PubMed  Google Scholar 

  5. Sargolini, F. et al. Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312, 758–762 (2006).

    CAS  PubMed  Google Scholar 

  6. Solstad, T., Boccara, C.N., Kropff, E., Moser, M.-B. & Moser, E.I. Representation of geometric borders in the entorhinal cortex. Science 322, 1865–1868 (2008).

    CAS  PubMed  Google Scholar 

  7. Jones, R.S. & Bühl, E.H. Basket-like interneurones in layer II of the entorhinal cortex exhibit a powerful NMDA-mediated synaptic excitation. Neurosci. Lett. 149, 35–39 (1993).

    CAS  PubMed  Google Scholar 

  8. Wouterlood, F.G., Härtig, W., Brückner, G. & Witter, M.P. Parvalbumin-immunoreactive neurons in the entorhinal cortex of the rat: localization, morphology, connectivity and ultrastructure. J. Neurocytol. 24, 135–153 (1995).

    CAS  PubMed  Google Scholar 

  9. Miettinen, M., Koivisto, E., Riekkinen, P. & Miettinen, R. Coexistence of parvalbumin and GABA in nonpyramidal neurons of the rat entorhinal cortex. Brain Res. 706, 113–122 (1996).

    CAS  PubMed  Google Scholar 

  10. Varga, C., Lee, S.Y. & Soltesz, I. Target-selective GABAergic control of entorhinal cortex output. Nat. Neurosci. 13, 822–824 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Canto, C.B., Wouterlood, F.G. & Witter, M.P. What does the anatomical organization of the entorhinal cortex tell us? Neural Plast. 2008, 381243 (2008).

    PubMed  PubMed Central  Google Scholar 

  12. Soriano, E., Martinez, A., Farinas, I. & Frotscher, M. Chandelier cells in the hippocampal formation of the rat: the entorhinal area and subicular complex. J. Comp. Neurol. 337, 151–167 (1993).

    CAS  PubMed  Google Scholar 

  13. Burgess, N., Barry, C. & O'Keefe, J. An oscillatory interference model of grid cell firing. Hippocampus 17, 801–812 (2007).

    PubMed  PubMed Central  Google Scholar 

  14. Zilli, E.A. & Hasselmo, M.E. Coupled noisy spiking neurons as velocity-controlled oscillators in a model of grid cell spatial firing. J. Neurosci. 30, 13850–13860 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kropff, E. & Treves, A. The emergence of grid cells: intelligent design or just adaptation? Hippocampus 18, 1256–1269 (2008).

    PubMed  Google Scholar 

  16. McNaughton, B.L., Battaglia, F.P., Jensen, O., Moser, E.I. & Moser, M.-B. Path integration and the neural basis of the 'cognitive map'. Nat. Rev. Neurosci. 7, 663–678 (2006).

    CAS  PubMed  Google Scholar 

  17. Fuhs, M.C. & Touretzky, D.S. A spin glass model of path integration in rat medial entorhinal cortex. J. Neurosci. 26, 4266–4276 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Burak, Y. & Fiete, I.R. Accurate path integration in continuous attractor network models of grid cells. PLoS Comput. Biol. 5, e1000291 (2009).

    PubMed  PubMed Central  Google Scholar 

  19. Domnisoru, C., Kinkhabwala, A.A. & Tank, D.W. Membrane potential dynamics of grid cells. Nature 495, 199–204 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Schmidt-Hieber, C. & Häusser, M. Cellular mechanisms of spatial navigation in the medial entorhinal cortex. Nat. Neurosci. 16, 325–331 (2013).

    CAS  PubMed  Google Scholar 

  21. Couey, J.J. et al. Recurrent inhibitory circuitry as a mechanism for grid formation. Nat. Neurosci. 16, 318–324 (2013).

    CAS  PubMed  Google Scholar 

  22. Pastoll, H., Solanka, L., van Rossum, M.C.W. & Nolan, M.F. Feedback inhibition enables theta-nested gamma oscillations and grid firing fields. Neuron 77, 141–154 (2013).

    CAS  PubMed  Google Scholar 

  23. Dhillon, A. & Jones, R.S. Laminar differences in recurrent excitatory transmission in the rat entorhinal cortex in vitro. Neuroscience 99, 413–422 (2000).

    CAS  PubMed  Google Scholar 

  24. Bonnevie, T. et al. Grid cells require excitatory drive from the hippocampus. Nat. Neurosci. 16, 309–317 (2013).

    CAS  PubMed  Google Scholar 

  25. Cardin, J.A. et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–667 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fuchs, E.C. et al. Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron 53, 591–604 (2007).

    CAS  PubMed  Google Scholar 

  27. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 100, 13940–13945 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    CAS  PubMed  Google Scholar 

  29. McCormick, D.A., Connors, B.W., Lighthall, J.W. & Prince, D.A. Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J. Neurophysiol. 54, 782–806 (1985).

    CAS  PubMed  Google Scholar 

  30. Csicsvari, J., Hirase, H., Czurko, A. & Buzsáki, G. Reliability and state dependence of pyramidal cell-interneuron synapses in the hippocampus: an ensemble approach in the behaving rat. Neuron 21, 179–189 (1998).

    CAS  PubMed  Google Scholar 

  31. Marshall, L. et al. Hippocampal pyramidal cell-interneuron spike transmission is frequency dependent and responsible for place modulation of interneuron discharge. J. Neurosci. 22, RC197 (2002).

    PubMed  PubMed Central  Google Scholar 

  32. Maurer, A.P., Cowen, S.L., Burke, S.N., Barnes, C.A. & McNaughton, B.L. Phase precession in hippocampal interneurons showing strong functional coupling to individual pyramidal cells. J. Neurosci. 26, 13485–13492 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Stensola, H. et al. The entorhinal grid map is discretized. Nature 492, 72–78 (2012).

    CAS  PubMed  Google Scholar 

  34. Atallah, B.V., Bruns, W., Carandini, M. & Scanziani, M. Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli. Neuron 73, 159–170 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zariwala, H.A. et al. Visual tuning properties of genetically identified layer 2/3 neuronal types in the primary visual cortex of cre-transgenic mice. Front. Syst. Neurosci. 4, 162 (2011).

    PubMed  PubMed Central  Google Scholar 

  36. Kato, H.K., Gillet, S.N., Peters, A.J., Isaacson, J.S. & Komiyama, T. Parvalbumin-expressing interneurons linearly control olfactory bulb output. Neuron 80, 1218–1231 (2013).

    CAS  PubMed  Google Scholar 

  37. Miyamichi, K. et al. Dissecting local circuits: parvalbumin interneurons underlie broad feedback control of olfactory bulb output. Neuron 80, 1232–1245 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Royer, S. et al. Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat. Neurosci. 15, 769–775 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Giocomo, L.M., Moser, M.-B. & Moser, E.I. Computational models of grid cells. Neuron 71, 589–603 (2011).

    CAS  PubMed  Google Scholar 

  40. Boccara, C.N. et al. Grid cells in pre- and parasubiculum. Nat. Neurosci. 13, 987–994 (2010).

    CAS  PubMed  Google Scholar 

  41. Klugmann, M. et al. Aav-mediated hippocampal expression of short and long homer1 proteins differentially affect cognition and seizure activity in adult rats. Mol. Cell. Neurosci. 28, 347–360 (2005).

    CAS  PubMed  Google Scholar 

  42. Allen, K., Fuchs, E.C., Jaschonek, H., Bannerman, D.M. & Monyer, H. Gap junctions between interneurons are required for normal spatial coding in the hippocampus and short-term spatial memory. J. Neurosci. 31, 6542–6552 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sirota, A. et al. Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron 60, 683–697 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Skaggs, W.E., McNaughton, B.L., Wilson, M.A. & Barnes, C.A. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6, 149–172 (1996).

    CAS  PubMed  Google Scholar 

  45. Meyer, A.H., Katona, I., Blatow, M., Rozov, A. & Monyer, H. In vivo labeling of parvalbumin-positive interneurons and analysis of electrical coupling in identified neurons. J. Neurosci. 22, 7055–7064 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Slezak, M. et al. Transgenic mice for conditional gene manipulation in astroglial cells. Glia 55, 1565–1576 (2007).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Savenkova and U. Amtmann for their technical assistance, W. Kelsch for providing help at initial stages of the study, M. Michael for immunohistochemical work, and P. Latuske for help with pilot experiments. This work was supported by a Humboldt Research Fellowship for Postdoctoral Studies and a grant from the Innovation Fund FRONTIER of Heidelberg University to K.A., a grant from the European Research Council Advanced Grant (Proposal number 250047) to H.M., and a grant from the German Ministry for Education and Research (BMBF, 01GQ1003A).

Author information

Authors and Affiliations

Authors

Contributions

C.B., K.A. and H.M. designed the experiments and wrote the manuscript. C.B. and K.A. performed in vivo electrophysiological experiments. C.B and K.A. analyzed the data.

Corresponding author

Correspondence to Hannah Monyer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 10831 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buetfering, C., Allen, K. & Monyer, H. Parvalbumin interneurons provide grid cell–driven recurrent inhibition in the medial entorhinal cortex. Nat Neurosci 17, 710–718 (2014). https://doi.org/10.1038/nn.3696

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3696

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing