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In neuroscience, experimental designs in which multiple 
observations are collected from a single research object  
(for example, multiple neurons from one animal) are  
common: 53% of 314 reviewed papers from five renowned 
journals included this type of data. These so-called  
‘nested designs’ yield data that cannot be considered to be 
independent, and so violate the independency assumption  
of conventional statistical methods such as the t test.  
Ignoring this dependency results in a probability of  
incorrectly concluding that an effect is statistically  
significant that is far higher (up to 80%) than the nominal a 
level (usually set at 5%). We discuss the factors affecting  
the type I error rate and the statistical power in nested  
data, methods that accommodate dependency between 
observations and ways to determine the optimal study  
design when data are nested. Notably, optimization of 
experimental designs nearly always concerns collection  
of more truly independent observations, rather than more 
observations from one research object.

Neuroscience has seen major advances in understanding the  
nervous system over the past decades. Serious concerns have,  
however, been raised about an excess of false positive results contami­
nating the neuroscience literature1–4. Controlling the false positive 
rate is critical, since theoretical progress in the neuroscience field 
relies fundamentally on drawing correct conclusions from experi­
mental research. Reported causes of increased levels of false posi­
tives range from inadequate sample size (i.e., underpowered studies), 
to lack of standardization with respect to research design, applied  
measures and corrections, exclusion/inclusion criteria, and choice 
of statistical methods. To improve transparency and reproducibility,  
Nature journals recently developed a checklist to aid authors to 
report basic methods information5,6. Among things, authors are 
asked whether the assumptions of chosen statistical methods are met. 
Here, we show that one of these assumptions, i.e., the assumption of  

independent observations, is particularly relevant to neuroscience: 
neuroscience data often show dependency (that is, nesting; Box 1) 
and failure to accommodate this is another, as yet neglected, cause of 
false positive results.

Nested designs are not unique to the neuroscience field, but  
are also encountered, for instance, in the social sciences (for  
example, children nested in classes, nested in schools), in behav­
ioral genetics (for example, relatives nested in families) and in the  
field of medicine (for example, patients nested in doctors, nested  
in hospitals). In biomedical research, nested data are common 
in electron microscopy studies, with the n often at a subcellular  
level. In neuroscience, however, studies on neuron morphology and 
physiology typically give rise to nested data, as technical advances 
allow researchers to obtain measurements on every dendrite of a  
neuron and every spine of each dendrite or to acquire multiple record­
ings of neuronal activity from the same cell.

The problem of nesting
Nested designs are designs in which multiple observations or mea­
surements are collected in each research object (for example, animal, 
tissue sample or neuron/cell)7. Consider the following fictive, yet 
representative, research results. “The channel blocker significantly 
affected Ca2+ signals (n = 120 regions of interest (ROI) from 10 cells, 
P < 0.01).” “The number of vesicles docked at the active zone was 
smaller in presynaptic boutons in mutant neurons than in WT neu­
rons (n = 20 and 25 synapses each from 3 neurons for mutant and WT, 
P < 0.01).” Both statements concern experimental designs involving 
nested (or clustered) data. These nested designs are particularly com­
mon to neuroscience, as many research questions in neuroscience 
consider multiple layers of complexity: from protein complexes, syn­
apses and neurons, to neuronal networks, connected systems in the 
brain and behavior. In such multiple layer–crossing designs, careful 
consideration of the issues that come with nesting is crucial to avoid 
incorrect inferences. The generality of nested designs in molecular, 
cellular and developmental neuroscience is apparent from a literature 
study that we conducted involving research articles published over 
the last 18 months in Science, Nature, Cell, Nature Neuroscience and 
every first issue of the month of Neuron (see below): at least 53% of 
the 314 publications included nested data.

But why is nesting an issue? Given that observations taken from 
the same research object (for example, brain, animal, cell) tend to 
be more similar than observations taken from different objects (for 
example, due to natural variation between objects, and differences in 
measurement procedures or conditions), nested designs yield clusters 
of observations that cannot be considered independent. Nevertheless, 
conventional statistical methods, such as the t test and ANOVA, are 
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(ICC = 0), all observations obtained from a research object are inde­
pendent, that is, contribute fully unique information. In the extreme 
case of ICC = 1, all observations obtained from the same research 
objects are equal and therefore convey the very same information.

The experimental variable (for example, genotype) can contribute 
to the dissimilarity of observations from different objects, and thereby 
to the relative similarity of observations from the same object. The 
part of the relative similarity that is attributable to the experimental 
variable is referred to as the explained ICC, whereas the part of the 
ICC that is attributable to other, unknown factors is called the unex­
plained ICC. We use the term ICC to indicate the unexplained ICC, 
unless stated otherwise. Notably, the unexplained part of the ICC 
causes inflation of the type I error rate.

In the extreme case of ICC = 1, the observed sample size may be N, 
but the effective sample size, that is, the number of unique information 
units, equals the number of research objects (that is, the number of 
clusters). For example, given five measurements on ten cells, ICC = 0  
implies a sample size of 5 × 10 = 50, but as the ICC tends to 1, the 
effective sample size tends to 10 (Fig. 2d). In terms of variation, corre­
lation between observations from the same research objects (ICC > 0) 
reduces the variation in the total sample, compared with the variation 
expected in a random sample (ICC = 0; Fig. 2a). Because conventional 
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often used to analyze these nested data, even though these methods 
assume observations to be independent. However, the failure to take 
the dependency among observations into account forms a threat to 
the validity of the statistical inference. Depending on the number 
of observations per research object and the degree of dependence, 
the probability of incorrectly concluding that an effect is statistically 
significant (that is, type I error rate) can be far higher than the nomi­
nal level expressed by α (usually α = 0.05). To illustrate the effect of 
nesting on results obtained through conventional tests, we conducted 
a simulation study (Fig. 1 and Supplementary Simulation). Given a 
nominal α of 0.05, ignoring nesting can result in an actual type I error 
rate as high as 0.80. That is, if no experimental effect is present, con­
ventional methods that do not accommodate dependency will yield 
spurious statistically significant results in 80% of the studies (see Box 2  
for a detailed discussion of the results and the theoretical proof).

The distinction between the observed and the effective sample size 
is essential for understanding why clustering affects the type I error 
rate. The core of this distinction is whether each individual observation 
contributes unique information. This can be inferred from the degree 
of relative similarity between observations obtained from the same 
research object. This similarity is expressed in the intracluster correla­
tion (ICC), which ranges from 0 to 1 (Fig. 2a–c). If clustering is absent 

Box 1 Key statistical terms 

Nested data. Data that are characterized by a hierarchical or multilevel structure, that is, are organized at more than one level. In neuroscience, for instance,  
synapses (level 1) are organized, or nested, in cells (level 2).
Dependent observations. Nesting often gives rise to dependency (similarity) among observations because observations obtained from the same research object  
(for example, cell) tend to be more alike than observations taken from different objects. Most statistical tests assume observations to be independent. Violation of 
this independence assumption can result in underestimated standard errors, underestimated P values and an increased type I error rate.
Observed versus effective sample size. Although independent observations convey unique information, dependent observations partly convey the same  
information. This loss of unique information reduces the observed sample size to the effective sample size, which denotes the number of independent  
observations required to carry the same amount of information as originally provided by the dependent ones.
Variance. Estimate of the variability in a data set. In nested data, the total variance (VarT) is the sum of the variance within research objects (VarW, variability 
among observations taken from the same cell) and the variance between research objects (VarB, the variation in cell means).
Intracluster correlation (ICC). Index of the relative similarity of observations taken from the same research object (for example, cell), and an indicator of the 
amount of dependence in the data. The ICC is calculated as VarB/[VarB + VarW]. Increasing the differences between research objects (VarB) and/or decreasing the 
differences among measures within a research object (VarW) increases the ICC. Experimental manipulations (for example, genotype) can increase the  
variability between objects (VarB) and thereby increase the ICC. The part of the ICC that can be attributed to the experimental manipulation is called the  
explained ICC. The remainder is called the unexplained ICC.
Multilevel model. A multilevel (also known as nested, hierarchical linear or random effects) model explicitly accommodates dependency between observations 
taken from the same object by allowing model parameters to differ between objects. By explicitly accommodating dependency, multilevel models consider the 
effective rather than the observed sample size, and thereby prevent type I error rate inflation.
Type I error or false positive. The incorrect rejection of a true null hypothesis. The probability to commit a type I error is denoted by α, which is generally set at 
0.05. Ignoring the nested structure of data may result in an inflated type I error rate.
Type II error or false negative. The failure to reject a false null hypothesis. The probability to commit a type II error is generally denoted by β.
Statistical power. The probability to correctly reject a false null hypothesis, that is, to detect an effect that is actually there. The power equals 1−β, where β 
denotes the probability to commit a type II error.
Effect size. An objective, standardized (scale free) measure of the magnitude of an observed effect. Cohen’s d, for instance, represents the standardized difference 
between the means of two groups. In multilevel analysis, the explained ICC (the explained variance R2) can be interpreted as effect size.

Figure 1 Use of conventional t test on nested data inflates the type I error  
rate, whereas cluster-based summary statistics decreases statistical power.  
(a) Under two conditions (unexplained ICC = 0.10 or 0.50), nested data  
were simulated for two experimental groups (for example, knockout versus  
wild type), with 25 clusters per group. The groups did not differ with respect  
to their means (that is, no experimental effect). These nested data were  
analyzed using either a conventional t test or multilevel analysis. When  
using a t test, the type I error increased steadily as the number of  
observations per cluster increased. The yellow bars with accompanying  
right y axis represent the average number of observations per cluster  
from 314 research articles published in Science, Nature, Cell,  
Nature Neuroscience and Neuron is shown. The vertical gray line represents  
the median number of observations per cluster reported in the literature.  
(b) Under two conditions (unexplained ICC = 0.10 or 0.50), nested data were simulated for two experimental groups with a small, medium or large 
experimental effect (Cohen’s d = 0.20, 0.50 or 0.80, respectively). Compared with multilevel analysis, the loss in power when analyzing summary statistics 
is larger when the number of clusters is smaller. The vertical gray line represents the median number of clusters observed in the 7% of published papers that 
reported analyses on cluster-based summary statistics in which multilevel analysis could have been used.
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statistical analyses are based on the observed rather than the effective 
sample size, standard errors of parameters are underestimated and test 
statistics are overestimated. As a result, the associated P values are too 
low, which results in an excessive type I error rate8.

To correctly handle dependence in nested designs, multilevel 
models (also known as hierarchical or random effects models) can 
be used. These models produce correct type I error rates (Fig. 1a). 
Alternatively, multilevel analysis can be circumvented by conduct­
ing conventional analyses on cluster­based summary statistics, for 
example, by performing a t test on the means or medians calculated 
in each cluster. Although this strategy is statistically valid, informa­
tion contributed by the individual observations is lost, and, relative to 
multilevel analysis, statistical power to detect the experimental effect 
of interest decreases7,9,10. Conducting t tests on cluster­based means 
instead of multilevel analysis on all observations results in up to a 40% 
loss of statistical power, depending on the number of clusters in the 
study and the ICC (Fig. 1b, and Supplementary Simulation).

The prevalence of nesting in neuroscience studies
To assess the prevalence of nested data and the ensuing problem of 
inflated type I error rate in neuroscience, we scrutinized all molecular, 
cellular and developmental neuroscience research articles published 

in five renowned journals (Science, Nature, Cell, Nature Neuroscience 
and every month’s first issue of Neuron) in 2012 and the first six 
months of 2013. Unfortunately, precise evaluation of the prevalence 
of nesting in the literature is hampered by incomplete reporting: not 
all studies report whether multiple measurements were taken from 
each research object and, if so, how many. Still, at least 53% of the 
314 examined articles clearly concerned nested data, of which 44% 
specifically reported the number of observations per cluster with a 
minimum of five observations per cluster (that is, for robust multilevel 
analysis a minimum of five observations per cluster is required11,12). 
The median number of observations per cluster, as reported in litera­
ture, was 13 (Fig. 1a), yet conventional analysis methods were used 
in all of these reports.

The studies reporting nested data typically do not provide infor­
mation on the ICC, which is required to evaluate the extent to which 
clustering affected the type I error rates of these studies. To assess the 
range of ICCs that can be expected, we analyzed 36 research questions 
in 18 neuroscience data sets from varying disciplines. In these data, 
unexplained ICCs ranged between 0.00 and 0.74, with a mean of 0.19 
(Supplementary Table 1). As even a low degree of dependency (for 
example, ICC = 0.10) increases the type I error rate from 5% to nearly 
20% when the number of observations per cluster is 13 (the median 

Box 2 Inflation of the type I error in nested data 

By considering the error variance (the squared standard error, SE2) of the experimental effect β1, we show why conventional regression on nested data leads to 
inflated type I error rate (probability of incorrectly rejecting the null hypothesis). In multilevel analysis, the SE2 of the experimental effect β1 is13
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where n represents the number of observations per clusters, ICC represents the unexplained intracluster correlation, N represents the number of clusters and se
2  

represents the residual error variance (see Fig. 2 for an graphical representation of the individual statistical terms). In conventional regression (the t test in  
regression terms), SE2 is

SE
n N

e
b

s
1
2

2
=

×
Consequently, if clustering is not accommodated, the SE2 is underestimated. The degree of underestimation depends on the number of observations per  
cluster n and the magnitude of the unexplained ICC (in equation (7), n × ICC is missing in the numerator). Note that, by using conventional regression on  
clustered data, the residual error variance se

2 is actually a composite of the residual error variance and variance resulting from clustering. Also, note that  
equations (6) and (7) assume a standardized model (all variables have a mean of 0 and s.d. of 1), a balanced design (the number of observations per cluster  
are equal and the number of clusters are evenly divided over the experimental groups) and absence of covariates.
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np
g

©
 2

01
4 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



494  VOLUME 17 | NUMBER 4 | APRIL 2014 nature neuroscience

p e r s p e c t i v e

number of observations per cluster observed in our literature study; 
Fig. 1a), an excess number of false positive results is to be expected. 
It should be noted that differences in the statistical significance of the 
findings between multilevel analysis and conventional testing are a 
result of the unexplained ICC only, not the total ICC (see, for exam­
ple, results of analysis 7, where all of the ICC is explained). Further 
inspection of the research articles that reported nested data with a 
minimum of five observations per cluster showed that 25% of the 
P values were between 0.01 and 0.001, and 31% between 0.05 and 
0.01. False positive effects are to be expected in at least some of these 
articles. Moreover, another 7% of the examined papers used cluster­
based summary statistics in which multilevel analysis could have been 
applied, resulting in a loss of power to detect experimental effects (see 
Fig. 1b and Supplementary Table 1 for examples of non­significant 
results obtained with pooled t tests, which actually prove significant 
when multilevel analysis is used).

Multilevel analysis
Multilevel models can be used to statistically accommodate depend­
ence between observations in nested designs. The basics of multilevel 
analysis are readily explained with reference to the conventional two­
group t test. Suppose we studied whether characteristic X of the cell is 
affected by a specific gene mutation. In 15 mice carrying the mutation, 
we collect ten cells (15 × 10 observations) and we do the same in 15 mice  
that do not carry the mutation, resulting in 300 observations in total. 
A standard t test on these data can be carried out by regressing X on 
the dummy coded (0/1) experimental variable. Significance of the 
slope parameter, representing the differences in means, can be tested 
using a t test (Fig. 3a). In this conventional analysis, cluster informa­
tion is discarded: all 15 × 10 observations in each group are simply 
pooled. In contrast, in multilevel analysis, the individual observations 
(the cells) are regarded as level 1 units, which are nested in the level 2  
units: the clusters (the mice). Multilevel analysis retains cluster­
membership information by conducting the t test on the cluster­level 
(mouse) means while retaining the distinction between the vari­
ance within clusters (differences between cells within a mouse) and  

variance between clusters (differences between the mice in cluster­
level means; Fig. 3b). Multilevel analysis therefore effectively accom­
modates the possibly increased similarity of observations taken from 
the same research object by retaining cluster­membership informa­
tion of each individual observation when evaluating parameters such 
as group differences.

Various standardized effect size measures have been suggested in 
the context of multilevel analysis13,14. When comparing only two 
experimental conditions, Cohen’s d is a generally accepted index. 
When comparing more than two experimental conditions, the over­
all effect size can be represented by the explained variance R2, which 
equals the explained ICC when the experimental condition only  
varies over clusters and not within clusters. Cohen15 defined a Cohen’s d  
of 0.20, 0.50 and 0.80, and an explained variance R2 of 0.01, 0.09 
and 0.25 as small, medium and large effects, respectively. Note that 
these two effect sizes are not on the same scale and can therefore  
not be compared directly. However, d and R2 can be converted into 
each other16
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Note that in equation (1), the sum of the Cohen’s d values obtained 
in pairwise comparisons is used when multiple pair­wise compari­
sons are combined into one omnibus test. Equations (1) and (2) 
assume experimental groups with equal sample sizes (see ref. 16 for 
formulas for unbalanced designs). A worked example of the analysis 
of nested data, including effect size calculation, is provided in the 
Supplementary Analysis and Supplementary Tables 2–6.

Power up: determining the optimal study design
Generally, power is increased by increasing the number of observa­
tions in a study. In conventional analysis, this is straightforward, but, 
in multilevel analysis, the relation between sample size and power 
is more complicated as the total number of observations is distrib­
uted over the research objects (clusters). In the allocation of research 
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Figure 3 Graphical representations of conventional t test and multilevel 
analysis. (a) Graphical representation of the conventional t test in 
regression terms: the individual observations yi are a function of the  
mean of the control group (that is, the intercept β0) and, when  
applicable, the estimated deviation from this mean for observations  
from the experimental group (that is, the slope β1), and an individual  
error term ei. X is essentially a weight variable that takes on values 0  
and 1 for observations from the control and experimental group, 
respectively. (b) Graphical representation of multilevel analysis. The 
individual outcomes of observation i from cluster j, yij, are a function  
of the cluster-specific intercept β0j plus, when applicable, the  
estimated deviation from this intercept for clusters belonging to  
the experimental group, β1, and an individual-specific error term eij.  
The higher the unexplained ICC, the more variation there is in the  
cluster specific intercepts β0j.
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resources (for example, money and time), a trade­off must be consid­
ered between the number of clusters and the number of observations 
per cluster. In practice, collecting many measures in a few clusters may 
be easier, faster and cheaper than collecting a few measures in many 
clusters. But which option confers the greatest power?

In multilevel analysis, power depends essentially on the number  
of clusters: power steadily increases to 100% as the number of  
clusters increases (Fig. 4a). In contrast, when increasing the number 
of observations per cluster, the power curve often approaches an 
asymptote below 100%, with the maximum level depending on the 
ICC (Fig. 4b). In general, high ICCs result in lower power and, unless 
the ICC is low, adding extra observations per cluster does little to 
increase power (Fig. 4a,b).

Given available resources (for example, money or time), the opti­
mal balance between the number of clusters (N) and the number 
of observations per cluster (n) can be determined, given a specified 
level of dependency (ICC). In theory, optimal N and n are dictated by 
the desired level of statistical power. In practice, however, available 
resources have a bearing on the attainable values of N and n. Given 
that including additional observations within a cluster (C1) is usually 
less costly than including an additional cluster (C2), these two costs 
are defined distinctly. The total costs of a study are calculated as

  
T N C n C= × × +( )1 2  (3) 

while the optimal number of observations per cluster can be obtained 
by solving9,13 

  
n C

C ICC
e

optimal = ×2
1

2s  (4)

where se
2  is the residual variance, which equals 1 − overall ICC  

(note that we make use of the standardized model, that is, the obser­
vations are standardized such that they have a mean of 0 and an s.d. 
of 1). Given the total available resources T and the optimal number 
of observations per cluster noptimal, the optimal number of clusters N 
can be obtained by

  
N T

n C C
=

× +optimal 1 2
 (5)

The optimal balance between the number of clusters and number  
of observations per cluster does not guarantee that the subsequent 
study will have sufficient power to detect the experimental effect  
of interest. The actual power of the experiment also depends on 
the chosen α level and on the expected effect size (for example,  
the magnitude of the difference between the control and experimen­
tal group). However, the calculated optimal N and n can be used to 
estimate the expected power given specific values of the effect size 
and the ICC (Box 3).

Box 3 Estimating the power to detect an experimental effect 

Here, we discuss statistical power (1 − β) in the context of multilevel data, that is, the probability of detecting an experimental effect that is actually present.  
The type II error rate (β) is the probability of not rejecting the false null hypothesis (in truth β1 ≠ 0). In multilevel analysis, the statistical significance of the 
experimental effect β1 is tested by referring the Z statistic β1/SEb1 to the standard normal distribution. In this Z test, the Z statistic reflects the number of  
s.d. that β1 deviates from the expected value under the null hypothesis (0), from which a P value for β1 can be calculated. Power can be calculated by  
obtaining the estimated error variance (SE2) of β1, using the estimated error variance to convert β1 to a Z statistic, and subsequently obtaining the probability  
that the Z score for β1 exceeds the critical value Z1−α for the noncentral Z distribution given α. Below, we discuss the power calculation stepwise.

When calculating power, it is easiest to work from the standardized model (both dependent and independent variable(s) have a mean of 0 and s.d. of 1)  
because, in this case, the difference in means between the experimental and control group equals the effect size Cohen’s d, and the residual error se

2 equals  
1 − overall ICC. The equation to obtain the estimated error variance SE2 of the experimental effect β1 is equation (6). Next, as12 
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b
a b
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2 1 1

1
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power can be estimated as
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2 1

1

− −= −b
b

a
b

 
 (9)

The critical value for Z1−α (the boundary value for which the null hypothesis will be rejected) can be obtained from a Z distribution table by locating  
the Z statistic that corresponds to the value of 1 − α. Note that for a two-sided test, Z1−α needs to be substituted by Z1−α/2 in equations (8) and (9).  
For instance, for a two-sided test with α = 0.05, Z1−α/2 = 1.96. The probability of the outcome value Z1−β can be obtained from a Z distribution table  
by locating the probability that corresponds to the Z statistic Z1−β. Note that when using a standardized model, the experimental effect β1 is half of the  
difference between the control and experimental group (in the standardized model assuming equal group sizes, the experimental variable X is coded as −1 and  
1 instead of 0 and 1).

To illustrate, suppose we are planning a study on the differences between wild-type and knockout mice with respect to a cell characteristic in primary  
cultures. We are planning to use 64 clusters (for example, primary cultures) with 12 observations per cluster in total (for example, the optimal number of  
clusters and observations per cluster at which we would have 4,000 monetary units to spend, the costs of plating a primary culture are 50 monetary units  
and the costs to obtain an observation from one cell of this primary culture equals 1 monetary unit, see equations (3)–(5)). Based on previous data, we assume 
that the unexplained ICC is approximately 0.25. As the effect size is unknown, we obtain an estimate of the power to detect a small (d = 0.2) and a medium  
(d = 0.5) difference between genotypes. Using equation (1), the difference between genotypes relates to an explained ICC of 0.01 and 0.06, respectively.  
Accordingly, se

2 is set to 1 − 0.25 − 0.01 = 0.74 and 1 − 0.25 − 0.06 = 0.69, respectively. Given that β1 is calculated as d × 0.5, the β1 for the small and me-
dium effects correspond to β1 = 0.2 × 0.5 = 0.1 and β1 = 0.5 × 0.5 = 0.25, respectively.

The power calculations assuming a two-sided test with α = 0.05 are as follows. The estimated error variance SE2 for the experimental effect equals  
(12 × 0.25 + 0.74)/(12 × 64) = 0.005 and (12 × 0.25 + 0.69)/(12 × 64) = 0.005 for a small and medium difference between genotypes. For a small  
difference between genotypes, Z1−β equals (0.1/√0.005) − 1.96 = −0.546. The probability of Z1−β, obtained using the Z distribution table, is 0.29, so we  
have an estimated power of 29%. Along the same lines, the power for detecting a medium difference between genotypes equals 94%. We conclude that the  
estimated power to detect a small experimental effect is too low. If we want a larger probability to detect a small experimental effect, more resources are  
needed to increase our sample size. Given that the cost ratio and the ICC stay equal, the optimal number of observations per cell remains 12 (see equation (4)). 
Thus, we only need to calculate how many extra cells we can afford given increased resources. If we tripled our resources to 12,000 monetary units, we could 
triple the number of primary cultures, which comes to 195 platings (see equation (5)). The power to detect a small experimental effect now increases to 69%.  
If we are only interested in detecting a medium effect size, our initial resources certainly suffice (given the calculated power of 94%).
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Discussion
Multilevel modeling is relevant to neuroscientific data collected using 
traditional techniques, such as the analysis of immunofluorescence 
signal intensity in slices (where the use of cluster­based summary 
statistics causes a loss of power), and the analysis of electrophysio­
logical parameters, such as excitatory postsynaptic potentials (where 
the use of conventional statistical models inflates type I error rates). 
Recent advances in the field of neuroscience, such as optogenet­
ics, super­resolution microscopy, immunogold cytochemistry and 
optopharmacology, will, if anything, increase the relevance of mul­
tilevel modeling17. A common feature of all these techniques is that 
they shift the n from the animal or tissue level to the cellular or even 
subcellular level, and invariably yield data with a nested structure. 
For instance, super­resolution light microscopy allows imaging and 
advanced understanding of neuronal compartments18, immunogold 
cytochemistry allows determination of subcellular localization of pro­
teins19, and recent advances in optogenetics and optopharmacology 
facilitate selective control of electrical and protein activity, respec­
tively, in circuits, individual cells or subcellular compartments20,21. 
All these techniques concern the collection of multiple observations 
from one cell, thereby yielding nested data.

To fully exploit the advantages that these techniques offer, neuro­
scientists should adopt multilevel modeling to avoid the limitations of 
conventional analyses in this context. In addition, nested data come 
with specific design issues that are relevant to the statistical power 
to resolve the effects of interest. Optimization of design in terms of 
allocation of resources does not guarantee sufficiently powered stud­
ies. In terms of power, the ratio of number of research objects (for 
example, mice) to the number of measurements per object (for exam­
ple, cells per mouse) is important. We showed that the power increase 
achievable by increasing the latter is limited (Fig. 4). In addition, 
to obtain robust and unbiased estimates of variance components in 
multilevel analysis, sufficient observations on both levels are required. 
As a rule of thumb, afforded by simulation studies11,12, a minimum of 
five observations per cluster and ten clusters per experimental group 
are recommended to obtain a robust and unbiased estimate of the 
standard error for the experimental effect. To also obtain a robust 
and unbiased estimate of the intracluster correlation, the number of 
clusters needs to be increased to 30.

Here we focused on the most common design, that is, data that span 
two levels (for example, cells in mice) and an experimental variable 
that does not vary within clusters (for example, in comparing cell 
characteristic X between mutants and wild types, all cells from one 
mouse have the same genotype). Other nested designs—featuring 
three or more levels of nesting, experimental variables that do vary 
within levels (for example, when investigating whether the number 
of docked vesicles differs between observations from a dendrite or an 
axon), nested longitudinal data (data collected on multiple time points 
describing dynamical processes22,23) or nested non­normally dis­
tributed data (for example, binary or Poisson distributed data)—are, 
however, possible and can be analyzed using multilevel analysis. We 
refer to previous publications12,13,24 for comprehensive introductions 
to multilevel modeling and to the Centre for Multilevel Modeling 
website (http://www.bristol.ac.uk/cmm/learning/mmsoftware/) for 
a recent overview of existing multilevel software.

Various recent publications force neuroscientists to acknowledge 
the possibility that the harvest of their hard labor is contaminated by 

an abundance of false positive effects1–4. Nested designs are ubiq­
uitous in neuroscience, and an increased awareness of the problem 
of nesting in both researchers and reviewers will prevent costly and 
time­consuming quixotic pursuits of spurious effects, thereby assist­
ing progress in the understanding of the nervous system.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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