Abstract
Timing is a crucial aspect of synaptic integration. For pyramidal neurons that integrate thousands of synaptic inputs spread across hundreds of microns, it is thus a challenge to maintain the timing of incoming inputs at the axo-somatic integration site. Here we show that pyramidal neurons in the rodent hippocampus use a gradient of inductance in the form of hyperpolarization-activated cation-nonselective (HCN) channels as an active mechanism to counteract location-dependent temporal differences of dendritic inputs at the soma. Using simultaneous multi-site whole-cell recordings complemented by computational modeling, we find that this intrinsic biophysical mechanism produces temporal synchrony of rhythmic inputs in the theta and gamma frequency ranges across wide regions of the dendritic tree. While gamma and theta oscillations are known to synchronize activity across space in neuronal networks, our results identify a new mechanism by which this synchrony extends to activity within single pyramidal neurons with complex dendritic arbors.
Access options
Subscribe to Journal
Get full journal access for 1 year
70,80 €
only 5,90 € per issue
All prices include VAT for France.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.
References
- 1.
Singer, W. & Gray, C.M. Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586 (1995).
- 2.
Engel, A.K., Fries, P. & Singer, W. Dynamic predictions: oscillations and synchrony in top-down processing. Nat. Rev. Neurosci. 2, 704–716 (2001).
- 3.
Buzsáki, G. Rhythms of the Brain (Oxford University Press, 2011).
- 4.
Colgin, L.L. et al. Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462, 353–357 (2009).
- 5.
Bragin, A. et al. Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J. Neurosci. 15, 47–60 (1995).
- 6.
Harris, K.D., Csicsvari, J., Hirase, H., Dragoi, G. & Buzsáki, G. Organization of cell assemblies in the hippocampus. Nature 424, 552–556 (2003).
- 7.
Chrobak, J.J., Lorincz, A. & Buzsaki, G. Physiological patterns in the hippocampo-entorhinal cortex system. Hippocampus 10, 457–465 (2000).
- 8.
O'Keefe, J. & Recce, M.L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 (1993).
- 9.
Skaggs, W.E., McNaughton, B.L., Wilson, M.A. & Barnes, C.A. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6, 149–172 (1996).
- 10.
Megías, M., Emri, Z., Freund, T.F. & Gulyás, A.I. Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102, 527–540 (2001).
- 11.
Dougherty, K.A., Islam, T. & Johnston, D. Intrinsic excitability of CA1 pyramidal neurones from the rat dorsal and ventral hippocampus. J. Physiol. (Lond.) 590, 5707–5722 (2012).
- 12.
Rall, W. Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J. Neurophysiol. 30, 1138–1168 (1967).
- 13.
Alexander, C. Fundamentals of Electric Circuits 2nd edn. (McGraw Hill, 2004).
- 14.
Mauro, A. Anomalous impedance, a phenomenological property of time-variant resistance. An analytical review. Biophys. J. 1, 353–372 (1961).
- 15.
Cole, K.S. Transverse impedance of the squid giant axon during current flow. J. Gen. Physiol. 24, 535–549 (1941).
- 16.
Cole, K.S. Membranes, Ions and Impulses (University of California Press, 1968).
- 17.
Magee, J.C. Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J. Neurosci. 18, 7613–7624 (1998).
- 18.
Robinson, R.B. & Siegelbaum, S.A. Hyperpolarization-activated cation currents: from molecules to physiological function. Annu. Rev. Physiol. 65, 453–480 (2003).
- 19.
Hutcheon, B. & Yarom, Y. Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci. 23, 216–222 (2000).
- 20.
Leung, L.S. & Yim, C.Y. Intracellular records of theta rhythm in hippocampal CA1 cells of the rat. Brain Res. 367, 323–327 (1986).
- 21.
Pike, F.G. et al. Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillatory input currents. J. Physiol. (Lond.) 529, 205–213 (2000).
- 22.
Hu, H., Vervaeke, K. & Storm, J.F. Two forms of electrical resonance at theta frequencies, generated by M-current, h-current and persistent Na+ current in rat hippocampal pyramidal cells. J. Physiol. (Lond.) 545, 783–805 (2002).
- 23.
Narayanan, R. & Johnston, D. The h channel mediates location dependence and plasticity of intrinsic phase response in rat hippocampal neurons. J. Neurosci. 28, 5846–5860 (2008).
- 24.
Narayanan, R. & Johnston, D. Long-term potentiation in rat hippocampal neurons is accompanied by spatially widespread changes in intrinsic oscillatory dynamics and excitability. Neuron 56, 1061–1075 (2007).
- 25.
Ulrich, D. Dendritic resonance in rat neocortical pyramidal cells. J. Neurophysiol. 87, 2753–2759 (2002).
- 26.
Cook, E.P., Guest, J., Liang, Y., Masse, N. & Colbert, C. Dendrite-to-soma input/output function of continuous time-varying signals in hippocampal CA pyramidal neurons. J. Neurophysiol. 98, 2943–2955 (2007).
- 27.
Hu, H., Vervaeke, K., Graham, L.J. & Storm, J.F. Complementary theta resonance filtering by two spatially segregated mechanisms in CA1 hippocampal pyramidal neurons. J. Neurosci. 29, 14472–14483 (2009).
- 28.
Golding, N.L. Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. J. Physiol. (Lond.) 568, 69–82 (2005).
- 29.
Magee, J.C. Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons. Nat. Neurosci. 2, 508–514 (1999).
- 30.
Williams, S.R. & Stuart, G.J. Site independence of EPSP time course is mediated by dendritic Ih in neocortical pyramidal neurons. J. Neurophysiol. 83, 3177–3182 (2000).
- 31.
Angelo, K., London, M., Christensen, S.R. & Häusser, M. Local and global effects of I(h) distribution in dendrites of mammalian neurons. J. Neurosci. 27, 8643–8653 (2007).
- 32.
Colgin, L.L. & Moser, E.I. Gamma oscillations in the hippocampus. Physiology (Bethesda) 25, 319–329 (2010).
- 33.
Jensen, O. & Colgin, L.L. Cross-frequency coupling between neuronal oscillations. Trends Cogn. Sci. 11, 267–269 (2007).
- 34.
Kamondi, A., Acsady, L., Wang, X.J. & Buzsaki, G. Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase-precession of action potentials. Hippocampus 8, 244–261 (1998).
- 35.
Harvey, C.D., Collman, F., Dombeck, D.A. & Tank, D.W. Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461, 941–946 (2009).
- 36.
Magee, J.C. & Cook, E.P. Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat. Neurosci. 3, 895–903 (2000).
- 37.
Oren, I., Mann, E.O., Paulsen, O. & Hajos, N. Synaptic currents in anatomically identified CA3 neurons during hippocampal gamma oscillations in vitro. J. Neurosci. 26, 9923–9934 (2006).
- 38.
Gasparini, S. & Magee, J.C. State-dependent dendritic computation in hippocampal CA1 pyramidal neurons. J. Neurosci. 26, 2088–2100 (2006).
- 39.
Takahashi, H. & Magee, J.C. Pathway interactions and synaptic plasticity in the dendritic tuft regions of CA1 pyramidal neurons. Neuron 62, 102–111 (2009).
- 40.
Fan, Y. et al. Activity-dependent decrease of excitability in rat hippocampal neurons through increases in I(h). Nat. Neurosci. 8, 1542–1551 (2005).
- 41.
Brager, D.H. & Johnston, D. Plasticity of intrinsic excitability during long-term depression is mediated through mGluR-dependent changes in Ih in hippocampal CA1 pyramidal neurons. J. Neurosci. 27, 13926–13937 (2007).
- 42.
Cassenaer, S. & Laurent, G. Hebbian STDP in mushroom bodies facilitates the synchronous flow of olfactory information in locusts. Nature 448, 709–713 (2007).
- 43.
Wehr, M. & Laurent, G. Odour encoding by temporal sequences of firing in oscillating neural assemblies. Nature 384, 162–166 (1996).
- 44.
Hahnloser, R.H.R., Kozhevnikov, A.A. & Fee, M.S. An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 419, 65–70 (2002).
- 45.
Buzsáki, G. Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68, 362–385 (2010).
- 46.
Buzsáki, G. Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus 15, 827–840 (2005).
- 47.
Buzsáki, G. & Moser, E.I. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat. Neurosci. 16, 130–138 (2013).
- 48.
Chevaleyre, V. & Castillo, P.E. Assessing the role of Ih channels in synaptic transmission and mossy fiber LTP. Proc. Natl. Acad. Sci. USA 99, 9538–9543 (2002).
- 49.
Carnevale, N.T. & Hines, M.L. The NEURON Book (Cambridge Univ. Press, 2009).
- 50.
Gasparini, S., Migliore, M. & Magee, J.C. On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. J. Neurosci. 24, 11046–11056 (2004).
- 51.
Shah, M.M., Migliore, M., Valencia, I., Cooper, E.C. & Brown, D.A. Functional significance of axonal Kv7 channels in hippocampal pyramidal neurons. Proc. Natl. Acad. Sci. USA 105, 7869–7874 (2008).
- 52.
Routh, B.N., Johnston, D., Harris, K. & Chitwood, R.A. Anatomical and electrophysiological comparison of CA1 pyramidal neurons of the rat and mouse. J. Neurophysiol. 102, 2288–2302 (2009).
- 53.
Kemenes, I. et al. Dynamic clamp with StdpC software. Nat. Protoc. 6, 405–417 (2011).
- 54.
Glickfeld, L.L. & Scanziani, M. Distinct timing in the activity of cannabinoid-sensitive and cannabinoid-insensitive basket cells. Nat. Neurosci. 9, 807–815 (2006).
- 55.
Torrence, C. & Compo, G. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61–78 (1998).
- 56.
Liu, Y., San Liang, X. & Weisberg, R. Rectification of the bias in the wavelet power spectrum. J. Atmos. Ocean. Technol. 24, 2093–2102 (2007).
Acknowledgements
We thank R. Chitwood, N. Dembrow, R. Gray and R. Narayanan for helpful discussions during the course of this study. We also thank members of the Johnston laboratory and L.L. Colgin for comments on earlier versions of this manuscript. This work was supported by grant MH 048432 from US National Institutes of Health to D.J.
Author information
Affiliations
Institute for Neuroscience Graduate Program, The University of Texas at Austin, Austin, Texas, USA.
- Sachin P Vaidya
Center for Learning and Memory, The University of Texas at Austin, Austin, Texas, USA.
- Sachin P Vaidya
- & Daniel Johnston
Authors
Search for Sachin P Vaidya in:
Search for Daniel Johnston in:
Contributions
S.P.V. & D.J. designed the experiments, interpreted the results and wrote the manuscript. S.P.V. performed the experiments, computer simulations and analysis of data.
Competing interests
The authors declare no competing financial interests.
Corresponding author
Correspondence to Daniel Johnston.
Integrated supplementary information
Supplementary figures
- 1.
Theta frequency oscillatory synchrony is observed only at the soma
- 2.
ZPPsoma comparison between CA1 neuron, the ball-and-stick model and morphologically realistic model
- 3.
Gradient of inductance achieves oscillatory synchrony with less voltage attenuation
- 4.
The spatial distribution of HCN channels achieves maximum transfer at synchronization frequency
- 5.
Dependence of oscillatory synchrony on the voltage dependence of activation and kinetics of HCN channels
- 6.
Voltage dependence of SyncFreq
- 7.
Addition of ZD7288 alters the band-pass filtering of SyncFreqs
- 8.
Accuracy of dynamic clamp over current clamp for high-frequency synaptic inputs
- 9.
Measurement of impedance phase profile (ZPP) by chirp versus sinusoids
- 10.
Time-frequency analysis using continuous wavelet transform
Supplementary information
PDF files
- 1.
Supplementary Text and Figures
Supplementary Figures 1–10
Rights and permissions
To obtain permission to re-use content from this article visit RightsLink.