Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Arl13b-regulated cilia activities are essential for polarized radial glial scaffold formation

Abstract

The construction of cerebral cortex begins with the formation of radial glia. Once formed, polarized radial glial cells divide either symmetrically or asymmetrically to balance appropriate production of progenitor cells and neurons. Following birth, neurons use the processes of radial glia as scaffolding for oriented migration. Radial glia therefore provide an instructive structural matrix to coordinate the generation and placement of distinct groups of cortical neurons in the developing cerebral cortex. We found that Arl13b, a cilia-enriched small GTPase that is mutated in Joubert syndrome, was critical for the initial formation of the polarized radial progenitor scaffold. Using developmental stage–specific deletion of Arl13b in mouse cortical progenitors, we found that early neuroepithelial deletion of ciliary Arl13b led to a reversal of the apical–basal polarity of radial progenitors and aberrant neuronal placement. Arl13b modulated ciliary signaling necessary for radial glial polarity. Our findings indicate that Arl13b signaling in primary cilia is crucial for the initial formation of a polarized radial glial scaffold and suggest that disruption of this process may contribute to aberrant neurodevelopment and brain abnormalities in Joubert syndrome–related ciliopathies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Primary cilia in neuroepithelial cells and cortical progenitors.
Figure 2: Disrupted formation of polarized radial progenitor scaffold in Arl13b mutants.
Figure 3: Disrupted cortical layer formation in Arl13b mutants.
Figure 4: Cortical developmental disruptions in Arl13b mutants.
Figure 5: Arl13b deletion in neuroepithelial cells disrupts radial progenitor scaffold organization and laminar organization of neurons in cerebral cortex.
Figure 6: Altered primary cilia dynamics in Arl13b mutants.
Figure 7: Disrupted localization and signaling of apical complex receptors IgfR1 in Arl13bhnn/hnn cortex.

Similar content being viewed by others

References

  1. Rakic, P. Specification of cerebral cortical areas. Science 241, 170–176 (1988).

    Article  CAS  Google Scholar 

  2. Miyata, T., Kawaguchi, A., Okano, H. & Ogawa, M. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31, 727–741 (2001).

    Article  CAS  Google Scholar 

  3. Noctor, S.C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A.R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7, 136–144 (2004).

    Article  CAS  Google Scholar 

  4. Götz, M. & Huttner, W.B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6, 777–788 (2005).

    Article  Google Scholar 

  5. Manzini, M.C. & Walsh, C.A. What disorders of cortical development tell us about the cortex: one plus one does not always make two. Curr. Opin. Genet. Dev. 21, 333–339 (2011).

    Article  CAS  Google Scholar 

  6. Tabata, H., Kanatani, S. & Nakajima, K. Differences of migratory behavior between direct progeny of apical progenitors and basal progenitors in the developing cerebral cortex. Cereb. Cortex 19, 2092–2105 (2009).

    Article  Google Scholar 

  7. Valiente, M. & Marin, O. Neuronal migration mechanisms in development and disease. Curr. Opin. Neurobiol. 20, 68–78 (2010).

    Article  CAS  Google Scholar 

  8. Yokota, Y. et al. Radial glial dependent and independent dynamics of interneuronal migration in the developing cerebral cortex. PLoS ONE 2, e794 (2007).

    Article  Google Scholar 

  9. Oh, E.C. & Katsanis, N. Cilia in vertebrate development and disease. Development 139, 443–448 (2012).

    Article  CAS  Google Scholar 

  10. Cantagrel, V. et al. Mutations in the cilia gene ARL13B lead to the classical form of Joubert syndrome. Am. J. Hum. Genet. 83, 170–179 (2008).

    Article  CAS  Google Scholar 

  11. Eggenschwiler, J.T. & Anderson, K.V. Cilia and developmental signaling. Annu. Rev. Cell Dev. Biol. 23, 345–373 (2007).

    Article  CAS  Google Scholar 

  12. Hildebrandt, F., Benzing, T. & Katsanis, N. Ciliopathies. N. Engl. J. Med. 364, 1533–1543 (2011).

    Article  CAS  Google Scholar 

  13. Lancaster, M.A. & Gleeson, J.G. The primary cilium as a cellular signaling center: lessons from disease. Curr. Opin. Genet. Dev. 19, 220–229 (2009).

    Article  CAS  Google Scholar 

  14. Louvi, A. & Grove, E.A. Cilia in the CNS: the quiet organelle claims center stage. Neuron 69, 1046–1060 (2011).

    Article  CAS  Google Scholar 

  15. Reiter, J.F. A cilium is not a cilium is not a cilium: signaling contributes to ciliary morphological diversity. Dev. Cell 14, 635–636 (2008).

    Article  CAS  Google Scholar 

  16. Scholey, J.M. & Anderson, K.V. Intraflagellar transport and cilium-based signaling. Cell 125, 439–442 (2006).

    Article  CAS  Google Scholar 

  17. Tissir, F. et al. Lack of cadherins Celsr2 and Celsr3 impairs ependymal ciliogenesis, leading to fatal hydrocephalus. Nat. Neurosci. 13, 700–707 (2010).

    Article  CAS  Google Scholar 

  18. Han, Y.G. et al. Dual and opposing roles of primary cilia in medulloblastoma development. Nat. Med. 15, 1062–1065 (2009).

    Article  CAS  Google Scholar 

  19. Wong, S.Y. et al. Primary cilia can both mediate and suppress Hedgehog pathway–dependent tumorigenesis. Nat. Med. 15, 1055–1061 (2009).

    Article  CAS  Google Scholar 

  20. Han, Y.G. & Alvarez-Buylla, A. Role of primary cilia in brain development and cancer. Curr. Opin. Neurobiol. 20, 58–67 (2010).

    Article  CAS  Google Scholar 

  21. Wilson, S.L., Wilson, J.P., Wang, C., Wang, B. & McConnell, S.K. Primary cilia and Gli3 activity regulate cerebral cortical size. Dev. Neurobiol. 72, 1196–1212 (2012).

    Article  CAS  Google Scholar 

  22. Breunig, J.J. et al. Primary cilia regulate hippocampal neurogenesis by mediating sonic hedgehog signaling. Proc. Natl. Acad. Sci. USA 105, 13127–13132 (2008).

    Article  CAS  Google Scholar 

  23. Amador-Arjona, A. et al. Primary cilia regulate proliferation of amplifying progenitors in adult hippocampus: implications for learning and memory. J. Neurosci. 31, 9933–9944 (2011).

    Article  CAS  Google Scholar 

  24. Willaredt, M.A. et al. A crucial role for primary cilia in cortical morphogenesis. J. Neurosci. 28, 12887–12900 (2008).

    Article  CAS  Google Scholar 

  25. Caspary, T., Larkins, C.E. & Anderson, K.V. The graded response to Sonic Hedgehog depends on cilia architecture. Dev. Cell 12, 767–778 (2007).

    Article  CAS  Google Scholar 

  26. Hébert, J.M. & McConnell, S.K. Targeting of cre to the Foxg1 (BF-1) locus mediates loxP recombination in the telencephalon and other developing head structures. Dev. Biol. 222, 296–306 (2000).

    Article  Google Scholar 

  27. Tronche, F. et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat. Genet. 23, 99–103 (1999).

    Article  CAS  Google Scholar 

  28. Zhuo, L. et al. hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis 31, 85–94 (2001).

    Article  CAS  Google Scholar 

  29. Su, C.-Y., Bay, S.N., Mariani, L.E., Hillman, M.J. & Caspary, T. Temporal deletion of Arl13b reveals that a mispatterned neural tube corrects cell fate over time. Development 139, 4062–4071 (2012).

    Article  CAS  Google Scholar 

  30. Mukhopadhyay, S., Lu, Y., Shaham, S. & Sengupta, P. Sensory signaling–dependent remodeling of olfactory cilia architecture in C. elegans. Dev. Cell 14, 762–774 (2008).

    Article  CAS  Google Scholar 

  31. Kim, J. et al. Functional genomic screen for modulators of ciliogenesis and cilium length. Nature 464, 1048–1051 (2010).

    Article  CAS  Google Scholar 

  32. Lehtinen, M.K. et al. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 69, 893–905 (2011).

    Article  CAS  Google Scholar 

  33. Zhu, D., Shi, S., Wang, H. & Liao, K. Growth arrest induces primary-cilium formation and sensitizes IGF-1–receptor signaling during differentiation induction of 3T3–L1 preadipocytes. J. Cell Sci. 122, 2760–2768 (2009).

    Article  CAS  Google Scholar 

  34. Christensen, S.T., Clement, C.A., Satir, P. & Pedersen, L.B. Primary cilia and coordination of receptor tyrosine kinase signaling. J. Pathol. 226, 172–184 (2012).

    Article  CAS  Google Scholar 

  35. Higginbotham, H. et al. Arl13b in primary cilia regulates the migration and placement of interneurons in the developing cerebral cortex. Dev. Cell 23, 925–938 (2012).

    Article  CAS  Google Scholar 

  36. Sawamoto, K. et al. New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311, 629–632 (2006).

    Article  CAS  Google Scholar 

  37. Cevik, S. et al. Joubert syndrome Arl13b functions at ciliary membranes and stabilizes protein transport in Caenorhabditis elegans. J. Cell Biol. 188, 953–969 (2010).

    Article  CAS  Google Scholar 

  38. Horner, V.L. & Caspary, T. Disrupted dorsal neural tube BMP signaling in the cilia mutant Arl13b hnn stems from abnormal Shh signaling. Dev. Biol. 355, 43–54 (2011).

    Article  CAS  Google Scholar 

  39. Wilsch-Bräuninger, M., Peters, J., Paridaen, J.T. & Huttner, W.B. Basolateral rather than apical primary cilia on neuroepithelial cells committed to delamination. Development 139, 95–105 (2012).

    Article  Google Scholar 

  40. Sahara, S. & O'Leary, D.D. Fgf10 regulates transition period of cortical stem cell differentiation to radial glia controlling generation of neurons and basal progenitors. Neuron 63, 48–62 (2009).

    Article  CAS  Google Scholar 

  41. Siegenthaler, J.A. & Pleasure, S.J. We have got you 'covered': how the meninges control brain development. Curr. Opin. Genet. Dev. 21, 249–255 (2011).

    Article  CAS  Google Scholar 

  42. Brancati, F., Dallapiccola, B. & Valente, E.M. Joubert syndrome and related disorders. Orphanet J. Rare Dis. 5, 20 (2010).

    Article  Google Scholar 

  43. Yokota, Y., Ring, C., Cheung, R., Pevny, L. & Anton, E.S. Nap1-regulated neuronal cytoskeletal dynamics is essential for the final differentiation of neurons in cerebral cortex. Neuron 54, 429–445 (2007).

    Article  CAS  Google Scholar 

  44. Schmid, R.S. et al. Neuregulin 1-erbB2 signaling is required for the establishment of radial glia and their transformation into astrocytes in cerebral cortex. Proc. Natl. Acad. Sci. USA 100, 4251–4256 (2003).

    Article  CAS  Google Scholar 

  45. Yokota, Y. et al. The adenomatous polyposis coli protein is an essential regulator of radial glial polarity and construction of the cerebral cortex. Neuron 61, 42–56 (2009).

    Article  CAS  Google Scholar 

  46. Aruga, J., Nozaki, Y., Hatayama, M., Odaka, Y.S. & Yokota, N. Expression of ZIC family genes in meningiomas and other brain tumors. BMC Cancer 10, 79 (2010).

    Article  Google Scholar 

  47. Berbari, N.F., Johnson, A.D., Lewis, J.S., Askwith, C.C. & Mykytyn, K. Identification of ciliary localization sequences within the third intracellular loop of G protein–coupled receptors. Mol. Biol. Cell 19, 1540–1547 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A.-S. Lamantia, L. Pevny, M. Deshmukh and W. Snider for helpful comments and C.T. Strauss for editing. This research was supported by US National Institutes of Health grants MH060929 to E.S.A. and NS056380 to T.C., a NARSAD Young Investigator Award to H.H., a US National Institutes of Health predoctoral training grant to N.L.U. (T32GM008490) and the confocal imaging core of a National Institute of Neurological Disorders and Stroke institutional center core grant (P30 NS045892).

Author information

Authors and Affiliations

Authors

Contributions

E.S.A., H.H., J.G., Y.Y. and T.C. designed the experiments and supervised the project. H.H., J.G., Y.Y., N.L.U., C.-Y.S., J.L., V.G., J.H. and N.V. conducted the experiments and analyzed the data. E.S.A., H.H., J.G. and T.C. wrote the manuscript.

Corresponding authors

Correspondence to Tamara Caspary or E S Anton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Text

Supplementary Figures 1–5 (PDF 15089 kb)

Supplementary Video 1

MRI scan (axial plane) through E12.5 wild-type embryo showing normal CNS organization. (MOV 9651 kb)

Supplementary Video 2

MRI scan (axial plane) through E12.5 mutant embryo showing the perturbance in telencephalic CNS structures in mutants. (MOV 7455 kb)

Supplementary Video 3

Primary cilia dynamics in the ventricular zone. (AVI 7122 kb)

Supplementary Video 4

Primary cilium changes its localization in progenitors. (AVI 2865 kb)

Supplementary Video 5

Wild-type primary cilia dynamics. (AVI 914 kb)

Supplementary Video 6

Arl13b mutant primary cilia dynamics. (AVI 772 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higginbotham, H., Guo, J., Yokota, Y. et al. Arl13b-regulated cilia activities are essential for polarized radial glial scaffold formation. Nat Neurosci 16, 1000–1007 (2013). https://doi.org/10.1038/nn.3451

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3451

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing