Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

EGF transactivation of Trk receptors regulates the migration of newborn cortical neurons

Abstract

The development of neuronal networks in the neocortex depends on control mechanisms for mitosis and migration that allow newborn neurons to find their accurate position. Multiple mitogens, neurotrophic factors, guidance molecules and their corresponding receptors are involved in this process, but the mechanisms by which these signals are integrated are only poorly understood. We found that TrkB and TrkC, the receptors for brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), are activated by epidermal growth factor receptor (EGFR) signaling rather than by BDNF or NT-3 in embryonic mouse cortical precursor cells. This transactivation event regulated migration of early neuronal cells to their final position in the developing cortex. Transactivation by EGF led to membrane translocation of TrkB, promoting its signaling responsiveness. Our results provide genetic evidence that TrkB and TrkC activation in early cortical neurons do not depend on BDNF and NT-3, but instead on transactivation by EGFR signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression and activation of TrkB by EGF in cortical precursors.
Figure 2: EGF is the major activator of TrkB in cortical precursor cells.
Figure 3: Characterization of TrkB transactivation by EGFR signaling.
Figure 4: Characterization of the 170-kDa band recognized by the pTrk-PLCγ antibody.
Figure 5: Translocation of TrkB to the cell surface of cortical precursor cells in response to EGF.
Figure 6: Reduced transactivation of TrkB in Egfr−/− mice affects the formation of the cortical plate.

Similar content being viewed by others

References

  1. Doetsch, F., Caille, I., Lim, D.A., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    CAS  PubMed  Google Scholar 

  2. Götz, M. & Huttner, W.B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6, 777–788 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Alvarez-Buylla, A., Garcia-Verdugo, J.M. & Tramontin, A.D. A unified hypothesis on the lineage of neural stem cells. Nat. Rev. Neurosci. 2, 287–293 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Gupta, A., Tsai, L.H. & Wynshaw-Boris, A. Life is a journey: a genetic look at neocortical development. Nat. Rev. Genet. 3, 342–355 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Angevine, J.B. & Sidman, R.L. Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192, 766–768 (1961).

    Article  PubMed  Google Scholar 

  6. Rakic, P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145, 61–83 (1972).

    Article  CAS  PubMed  Google Scholar 

  7. Molyneaux, B.J., Arlotta, P., Menezes, J.R.L. & Macklis, J.D. Neuronal subtype specification in the cerebral cortex. Nat. Rev. Neurosci. 8, 427–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Bayer, S.A. & Altman, J. Neocortical Development (Raven, New York, 1991).

  9. Ayala, R., Shu, T. & Tsai, L.H. Trekking across the brain: the journey of neuronal migration. Cell 128, 29–43 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Rakic, P. Evolution of the neocortex: a perspective from developmental biology. Nat. Rev. Neurosci. 10, 724–735 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maisonpierre, P.C. et al. NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron 5, 501–509 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Behar, T.N. Neurotrophins stimulate chemotaxis of embryonic cortical neurons. Eur. J. Neurosci. 9, 2561–2570 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Bartkowska, K., Paquin, A., Gauthier, A.S., Kaplan, D.R. & Miller, F.D. Trk signaling regulates neural precursor cell proliferation and differentiation during cortical development. Development 134, 4369–4380 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Ernfors, P., Lee, K.F. & Jaenisch, R. Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 368, 147–150 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Ernfors, P., Lee, K.-F., Kucera, J. & Jaenisch, R. Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell 77, 503–512 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Medina, D.L. et al. TrkB regulates neocortex formation through the Shc/PLCgamma-mediated control of neuronal migration. EMBO J. 23, 3803–3814 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lotto, R.B., Asavaritikrai, P., Vali, L. & Price, D.J. Target-derived neurotrophic factors regulate the death of developing forebrain neurons after a change in their trophic requirements. J. Neurosci. 21, 3904–3910 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu, B. et al. Cortical degeneration in the absence of neurotrophin signaling: dendritic retraction and neuronal loss after removal of the receptor TrkB. Neuron 26, 233–245 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Cheng, A., Wang, S., Cai, J., Rao, M.S. & Mattson, M.P. Nitric oxide acts in a positive feedback loop with BDNF to regulate neural progenitor cell proliferation and differentiation in the mammalian brain. Dev. Biol. 258, 319–333 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Visel, A. et al. Regulatory pathway analysis by high-throughput in situ hybridization. PLoS Genet. 3, 1867–1883 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Götz, R. et al. Bag1 is essential for differentiation and survival of hematopoietic and neuronal cells. Nat. Neurosci. 8, 1169–1178 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee, F.S., Ragagopal, R., Kim, A.H., Chang, P. & Chao, M.V. Activation of Trk neurotrophin receptor signaling by pituitary adenylate cyclase–activating polypeptides. J. Biol. Chem. 277, 9096–9102 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Wiese, S. et al. Adenosine receptor A2A-R contributes to motoneuron survival by transactivating the tyrosine kinase receptor TrkB. Proc. Natl. Acad. Sci. USA 104, 17210–17215 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Iwakura, Y., Nawa, H., Sora, I. & Chao, M.V. Dopamine D1 receptor–induced signaling through TrkB receptors in striatal neurons. J. Biol. Chem. 283, 15799–15806 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Caric, D. et al. EGFRs mediate chemotactic migration in the developing telencephalon. Development 128, 4203–4216 (2001).

    CAS  PubMed  Google Scholar 

  26. Burrows, R.C., Wancio, D., Levitt, P. & Lillien, L. Response diversity and the timing of progenitor cell maturation are regulated by developmental changes in EGFR expression in the cortex. Neuron 19, 251–267 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Sun, Y., Goderie, S.K. & Temple, S. Asymmetric distribution of EGFR receptor during mitosis generates diverse CNS progenitor cells. Neuron 45, 873–886 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Rohrer, B., Korenbrot, J.I., LaVail, M.M., Reichardt, L.F. & Xu, B. Role of neurotrophin receptor TrkB in the maturation of rod photoreceptors and establishment of synaptic transmission to the inner retina. J. Neurosci. 19, 8919–8930 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rajagopal, R. & Chao, M.V. A role for Fyn in Trk receptor transactivation by G protein–coupled receptor signaling. Mol. Cell Neurosci. 33, 36–46 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Lee, F.S. & Chao, M. Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc. Natl. Acad. Sci. USA 98, 3555–3560 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mukhopadhyay, D. et al. Hypoxic induction of human vascular endothelial growth factor expression through c-Src activation. Nature 375, 577–581 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Resh, M.D. Fyn, a Src family tyrosine kinase. Int. J. Biochem. Cell Biol. 30, 1159–1162 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Fry, D.W. et al. A specific inhibitor of the epidermal growth factor receptor tyrosine kinase. Science 265, 1093–1095 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Vagin, O., Kraut, J.A. & Sachs, G. Role of N-glycosylation in trafficking of apical membrane proteins in epithelia. Am. J. Physiol. Renal Physiol. 296, F459–F469 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Gut, A. et al. Carbohydrate-mediated Golgi to cell surface transport and apical targeting of membrane proteins. EMBO J. 17, 1919–1929 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vagin, O., Turdikulova, S. & Sachs, G. Recombinant addition of N-glycosylation sites to the basolateral Na,K-ATPase beta1 subunit results in its clustering in caveolae and apical sorting in HGT-1 cells. J. Biol. Chem. 280, 43159–43167 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Sibilia, M. & Wagner, E.F. Strain-dependent epithelial defects in mice lacking the EGF receptor. Science 269, 234–238 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Vielmetter, J., Stolze, B., Bonhoeffer, F. & Stuermer, C.A. In vitro assay to test differential substrate affinities of growing axons and migratory cells. Exp. Brain Res. 81, 283–287 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. Knöll, B., Weinl, C., Nordheim, A. & Bonhoeffer, F. Stripe assay to examine axonal guidance and cell migration. Nat. Protoc. 2, 1216–1224 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Paves, H. & Saarma, M. Neurotrophins as in vitro growth cone guidance molecules for embryonic sensory neurons. Cell Tissue Res. 290, 285–297 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Ming, G.L. et al. Adaptation in the chemotactic guidance of nerve growth cones. Nature 417, 411–418 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Dontchev, V.D. & Letourneau, P. Nerve growth factor and semaphorin 3A signaling pathways interact in regulating sensory neuronal growth cone motility. J. Neurosci. 22, 6659–6669 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rajagopal, R., Chen, Z.Y., Lee, F.S. & Chao, M.V. Transactivation of Trk neurotrophin receptors by G protein–coupled receptor ligands occurs on intracellular membranes. J. Neurosci. 24, 6650–6658 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sibilia, M., Steinbach, J., Stingl, L., Aguzzi, A. & Wagner, E.F. A strain-independent postnatal neurodegeneration in mice lacking the EGF receptor. EMBO J. 17, 719–731 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Doetsch, F., Petreanu, L., Caille, I. & Garcia-Verdugo, J.M. & Alvarez-Buylla, A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36, 1021–1034 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Tropepe, V., Craig, C.G., Morshead, C.M. & van der Kooy, D. Transforming Growth Factor-alpha Null and Senescent Mice Show Decreased Neural Progenitor Cell Proliferation in the Forebrain Subependyma. J. Neurosci. 17, 7850–7859 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Qiu, L. et al. Crosstalk between EGFR and TrkB enhances ovarian cancer cell migration and proliferation. Int. J. Oncol. 29, 1003–1011 (2006).

    CAS  PubMed  Google Scholar 

  48. Meyer-Franke, A. et al. Depolarization and cAMP elevation rapidly recruit TrkB to the plasma membrane of CNS neurons. Neuron 21, 681–693 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, Y. et al. TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment. Neuron 59, 399–412 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bergami, M. et al. Deletion of TrkB in adult progenitors alters newborn neuron integration into hippocampal circuits and increases anxiety-like behavior. Proc. Natl. Acad. Sci. USA 105, 15570–15575 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Arévalo, J.C. et al. Cell survival through Trk neurotrophin receptors is differentially regulated by ubiquitination. Neuron 50, 549–559 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Takahashi, H. et al. Postsynaptic TrkC and presynaptic PTPsigma function as a bidirectional excitatory synaptic organizing complex. Neuron 69, 287–303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rasmussen, R. Quantification on the LightCycler. in Rapid Cycle Real-Time PCR: Methods and Applications (ed. Meurer, S.) 21–34 (Springer, Berlin, 2001).

  54. Jablonka, S., Beck, M., Lechner, B.D., Mayer, C. & Sendtner, M. Defective Ca2+ channel clustering in axon terminals disturbs excitability in motoneurons in spinal muscular atrophy. J. Cell Biol. 179, 139–149 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Sibilia (Medical University of Vienna) for providing Egfr−/− mice, Y.A. Barde (University of Basel ) for the HA-TrkB construct, K. Walter for excellent technical assistance, and W. Fouquet and S. Sigrist for their help in STED microscopy. This work was supported by the Deutsche Forschungsgemeinschaft, grants SFB 487, C4 (N.O.) and SFB 581, B4 (D.P. and M.S.), ForNeuroCell (M.S.) and by US National Institutes of Health grant NS21072-24 (M.V.C.).

Author information

Authors and Affiliations

Authors

Contributions

D.P. and M.S. designed the experiments. M.V.C. and T.H. provided tools and were involved in the early design of this study. D.P. performed most of the experiments. N.S. helped with the initial design and generation of lentiviruses for TrkB knockdown. T.H. generated viruses for dominant-negative Src. P.L. helped with biotin streptavidin cell surface protein isolation. N.O. helped with cell culture techniques for neural stem cells and performed the experiments. D.P. and M.S. wrote the manuscript.

Corresponding author

Correspondence to Michael Sendtner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 2292 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puehringer, D., Orel, N., Lüningschrör, P. et al. EGF transactivation of Trk receptors regulates the migration of newborn cortical neurons. Nat Neurosci 16, 407–415 (2013). https://doi.org/10.1038/nn.3333

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3333

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing