Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Paradoxical contribution of SK3 and GIRK channels to the activation of mouse vomeronasal organ

Abstract

The vomeronasal organ (VNO) is essential for intraspecies communication in many terrestrial vertebrates. The ionic mechanisms of VNO activation remain unclear. We found that the calcium-activated potassium channel SK3 and the G protein–activated potassium channel GIRK are part of an independent pathway for VNO activation. In slice preparations, the potassium channels attenuated inward currents carried by TRPC2 and calcium-activated chloride channels (CACCs). In intact tissue preparations, paradoxically, the potassium channels enhanced urine-evoked inward currents. This discrepancy resulted from the loss of a high concentration of lumenal potassium, which enabled the influx of potassium ions to depolarize the VNO neurons in vivo. Both Sk3 (also known as Kcnn3) and Girk1 (also known as Kcnj3) homozygous null mice showed deficits in mating and aggressive behaviors, and the deficiencies in Sk3−/− mice were exacerbated by Trpc2 knockout. Our results suggest that VNO activation is mediated by TRPC2, CACCs and two potassium channels, all of which contributed to the in vivo depolarization of VNO neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Contribution of K+ current to urine-induced responses in VNO neurons.
Figure 2: Contribution of SK3 channel to VNO activation.
Figure 3: Contribution of GIRK channels to VNO activation.
Figure 4: Urine-evoked responses in Sk3−/− and Girk1−/− VNO neurons.
Figure 5: Single-channel activities in the VNO dendrite.
Figure 6: SK3 and GIRK channels mediate urine-evoked inward current in intact preparations.
Figure 7: High K+ in the VNO lumen and reconstitution of native K+ environment in VNO slices.
Figure 8: Aggressive and mating behaviors in male Sk3−/−, Girk1−/− and Trpc2−/− mice.

Similar content being viewed by others

References

  1. Halpern, M. The organization and function of the vomeronasal system. Annu. Rev. Neurosci. 10, 325–362 (1987).

    Article  CAS  Google Scholar 

  2. Tirindelli, R., Dibattista, M., Pifferi, S. & Menini, A. From pheromones to behavior. Physiol. Rev. 89, 921–956 (2009).

    Article  CAS  Google Scholar 

  3. Meredith, M. Chronic recording of vomeronasal pump activation in awake behaving hamsters. Physiol. Behav. 56, 345–354 (1994).

    Article  CAS  Google Scholar 

  4. Dulac, C. & Axel, R. A novel family of genes encoding putative pheromone receptors in mammals. Cell 83, 195–206 (1995).

    Article  CAS  Google Scholar 

  5. Herrada, G. & Dulac, C. A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90, 763–773 (1997).

    Article  CAS  Google Scholar 

  6. Matsunami, H. & Buck, L.B. A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90, 775–784 (1997).

    Article  CAS  Google Scholar 

  7. Pantages, E. & Dulac, C. A novel family of candidate pheromone receptors in mammals. Neuron 28, 835–845 (2000).

    Article  CAS  Google Scholar 

  8. Ryba, N.J. & Tirindelli, R. A new multigene family of putative pheromone receptors. Neuron 19, 371–379 (1997).

    Article  CAS  Google Scholar 

  9. Rivière, S., Challet, L., Fluegge, D., Spehr, M. & Rodriguez, I. Formyl peptide receptor–like proteins are a novel family of vomeronasal chemosensors. Nature 459, 574–577 (2009).

    Article  Google Scholar 

  10. Liberles, S.D. et al. Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. Proc. Natl. Acad. Sci. USA 106, 9842–9847 (2009).

    Article  CAS  Google Scholar 

  11. Inamura, K., Kashiwayanagi, M. & Kurihara, K. Inositol-1,4,5-trisphosphate induces responses in receptor neurons in rat vomeronasal sensory slices. Chem. Senses 22, 93–103 (1997).

    Article  CAS  Google Scholar 

  12. Sasaki, K., Okamoto, K., Inamura, K., Tokumitsu, Y. & Kashiwayanagi, M. Inositol-1,4,5-trisphosphate accumulation induced by urinary pheromones in female rat vomeronasal epithelium. Brain Res. 823, 161–168 (1999).

    Article  CAS  Google Scholar 

  13. Spehr, M., Hatt, H. & Wetzel, C.H. Arachidonic acid plays a role in rat vomeronasal signal transduction. J. Neurosci. 22, 8429–8437 (2002).

    Article  CAS  Google Scholar 

  14. Kroner, C., Breer, H., Singer, A.G. & O'Connell, R.J. Pheromone-induced second messenger signaling in the hamster vomeronasal organ. Neuroreport 7, 2989–2992 (1996).

    Article  CAS  Google Scholar 

  15. Liman, E.R., Corey, D.P. & Dulac, C. TRP2: a candidate transduction channel for mammalian pheromone sensory signaling. Proc. Natl. Acad. Sci. USA 96, 5791–5796 (1999).

    Article  CAS  Google Scholar 

  16. Lucas, P., Ukhanov, K., Leinders-Zufall, T. & Zufall, F. A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: mechanism of pheromone transduction. Neuron 40, 551–561 (2003).

    Article  CAS  Google Scholar 

  17. Vannier, B. et al. Mouse trp2, the homologue of the human trpc2 pseudogene, encodes mTrp2, a store depletion-activated capacitative Ca2+ entry channel. Proc. Natl. Acad. Sci. USA 96, 2060–2064 (1999).

    Article  CAS  Google Scholar 

  18. Stowers, L., Holy, T.E., Meister, M., Dulac, C. & Koentges, G. Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295, 1493–1500 (2002).

    Article  CAS  Google Scholar 

  19. Leypold, B.G. et al. Altered sexual and social behaviors in trp2 mutant mice. Proc. Natl. Acad. Sci. USA 99, 6376–6381 (2002).

    Article  CAS  Google Scholar 

  20. Kimchi, T., Xu, J. & Dulac, C. A functional circuit underlying male sexual behaviour in the female mouse brain. Nature 448, 1009–1014 (2007).

    Article  CAS  Google Scholar 

  21. Liman, E.R. Regulation by voltage and adenine nucleotides of a Ca2+-activated cation channel from hamster vomeronasal sensory neurons. J. Physiol. (Lond.) 548, 777–787 (2003).

    Article  CAS  Google Scholar 

  22. Spehr, J. et al. Ca2+-calmodulin feedback mediates sensory adaptation and inhibits pheromone-sensitive ion channels in the vomeronasal organ. J. Neurosci. 29, 2125–2135 (2009).

    Article  CAS  Google Scholar 

  23. Yang, C. & Delay, R.J. Calcium-activated chloride current amplifies the response to urine in mouse vomeronasal sensory neurons. J. Gen. Physiol. 135, 3–13 (2010).

    Article  CAS  Google Scholar 

  24. Kim, S., Ma, L. & Yu, C.R. Requirement of calcium-activated chloride channels in the activation of mouse vomeronasal neurons. Nat. Commun. 2, 365 (2011).

    Article  Google Scholar 

  25. Hagendorf, S., Fluegge, D., Engelhardt, C. & Spehr, M. Homeostatic control of sensory output in basal vomeronasal neurons: activity-dependent expression of ether-a-go-go-related gene potassium channels. J. Neurosci. 29, 206–221 (2009).

    Article  CAS  Google Scholar 

  26. Inamura, K., Kashiwayanagi, M. & Kurihara, K. Blockage of urinary responses by inhibitors for IP3-mediated pathway in rat vomeronasal sensory neurons. Neurosci. Lett. 233, 129–132 (1997).

    Article  CAS  Google Scholar 

  27. Bond, C.T. et al. Respiration and parturition affected by conditional overexpression of the Ca2+-activated K+ channel subunit SK3. Science 289, 1942–1946 (2000).

    Article  CAS  Google Scholar 

  28. Krapivinsky, G. et al. The G protein–gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K+-channel proteins. Nature 374, 135–141 (1995).

    Article  CAS  Google Scholar 

  29. Hedin, K.E., Lim, N.F. & Clapham, D.E. Cloning of a Xenopus laevis inwardly rectifying K+ channel subunit that permits GIRK1 expression of IKACh currents in oocytes. Neuron 16, 423–429 (1996).

    Article  CAS  Google Scholar 

  30. Bettahi, I., Marker, C.L., Roman, M.I. & Wickman, K. Contribution of the Kir3.1 subunit to the muscarinic-gated atrial potassium channel IKACh. J. Biol. Chem. 277, 48282–48288 (2002).

    Article  CAS  Google Scholar 

  31. Barfod, E.T., Moore, A.L. & Lidofsky, S.D. Cloning and functional expression of a liver isoform of the small conductance Ca2+-activated K+ channel SK3. Am. J. Physiol. Cell Physiol. 280, C836–C842 (2001).

    Article  CAS  Google Scholar 

  32. Nikolov, E.N. & Ivanova-Nikolova, T.T. Functional characterization of a small conductance GIRK channel in rat atrial cells. Biophys. J. 87, 3122–3136 (2004).

    Article  CAS  Google Scholar 

  33. Zhang, P., Yang, C. & Delay, R.J. Urine stimulation activates BK channels in mouse vomeronasal neurons. J. Neurophysiol. 100, 1824–1834 (2008).

    Article  CAS  Google Scholar 

  34. Ukhanov, K., Leinders-Zufall, T. & Zufall, F. Patch-clamp analysis of gene-targeted vomeronasal neurons expressing a defined V1r or V2r receptor: ionic mechanisms underlying persistent firing. J. Neurophysiol. 98, 2357–2369 (2007).

    Article  CAS  Google Scholar 

  35. Wekesa, K.S. & Anholt, R.R. Pheromone regulated production of inositol-(1, 4, 5)-trisphosphate in the mammalian vomeronasal organ. Endocrinology 138, 3497–3504 (1997).

    Article  CAS  Google Scholar 

  36. Zhang, P., Yang, C. & Delay, R.J. Odors activate dual pathways, a TRPC2 and a AA-dependent pathway, in mouse vomeronasal neurons. Am. J. Physiol. Cell Physiol. 298, C1253–C1264 (2010).

    Article  CAS  Google Scholar 

  37. Labra, A., Brann, J.H. & Fadool, D.A. Heterogeneity of voltage- and chemosignal-activated response profiles in vomeronasal sensory neurons. J. Neurophysiol. 94, 2535–2548 (2005).

    Article  Google Scholar 

  38. Fadool, D.A., Wachowiak, M. & Brann, J.H. Patch-clamp analysis of voltage-activated and chemically activated currents in the vomeronasal organ of Sternotherus odoratus (stinkpot/musk turtle). J. Exp. Biol. 204, 4199–4212 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Moss, R.L. et al. Urine-derived compound evokes membrane responses in mouse vomeronasal receptor neurons. J. Neurophysiol. 77, 2856–2862 (1997).

    Article  CAS  Google Scholar 

  40. Moss, R.L. et al. Electrophysiological and biochemical responses of mouse vomeronasal receptor cells to urine-derived compounds: possible mechanism of action. Chem. Senses 23, 483–489 (1998).

    Article  CAS  Google Scholar 

  41. Holy, T.E., Dulac, C. & Meister, M. Responses of vomeronasal neurons to natural stimuli. Science 289, 1569–1572 (2000).

    Article  CAS  Google Scholar 

  42. Imai, T. & Sakano, H. Odorant receptor–mediated signaling in the mouse. Curr. Opin. Neurobiol. 18, 251–260 (2008).

    Article  CAS  Google Scholar 

  43. Norlin, E.M., Gussing, F. & Berghard, A. Vomeronasal phenotype and behavioral alterations in G alpha i2 mutant mice. Curr. Biol. 13, 1214–1219 (2003).

    Article  CAS  Google Scholar 

  44. Chamero, P. et al. G protein G(alpha)o is essential for vomeronasal function and aggressive behavior in mice. Proc. Natl. Acad. Sci. USA 108, 12898–12903 (2011).

    Article  CAS  Google Scholar 

  45. Hasen, N.S. & Gammie, S.C. Trpc2 gene impacts on maternal aggression, accessory olfactory bulb anatomy and brain activity. Genes Brain Behav. 8, 639–649 (2009).

    Article  CAS  Google Scholar 

  46. Kelliher, K.R., Spehr, M., Li, X.H., Zufall, F. & Leinders-Zufall, T. Pheromonal recognition memory induced by TRPC2-independent vomeronasal sensing. Eur. J. Neurosci. 23, 3385–3390 (2006).

    Article  Google Scholar 

  47. He, J. et al. Distinct signals conveyed by pheromone concentrations to the mouse vomeronasal organ. J. Neurosci. 30, 7473–7483 (2010).

    Article  CAS  Google Scholar 

  48. Leinders-Zufall, T. et al. Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature 405, 792–796 (2000).

    Article  CAS  Google Scholar 

  49. Liman, E.R. & Corey, D.P. Electrophysiological characterization of chemosensory neurons from the mouse vomeronasal organ. J. Neurosci. 16, 4625–4637 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are truly grateful for the continuing support and guidance from R. Axel, from whose laboratory this work originated. We appreciate the generosity of K. Wickman (University of Minnesota) for providing the Girk1−/− mice and E. Liman (University of Southern California) for providing the TRPC2 antibodies. We thank A. Moran, S. Klinefelter and the Lab Animal Services at the Stowers Institute for technical assistance. We thank S. Haga-Yamanaka for critical comments on the paper, H. Li and L. Chandrasekaran for statistical consultation, and C. McLaughlin for editorial assistance. This work is supported by funding from the Stowers Institute and the US National Institutes of Health (National Institute on Deafness and Other Communication Disorders 008003) to C.R.Y. The content of this study is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute on Deafness and Other Communication Disorders or the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

S.K. and C.R.Y. performed the electrophysiology experiments and data analyses. L.M. and C.R.Y. performed the histology experiments. L.M. prepared the mice used in the studies. K.L.J., M.M.K. and C.R.Y. performed behavior analyses. C.T.B. and J.P.A. contributed critical reagent. C.R.Y. wrote the manuscript with the input from S.K., L.M., J.P.A. and K.L.J.

Corresponding author

Correspondence to C Ron Yu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1 (PDF 5294 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Ma, L., Jensen, K. et al. Paradoxical contribution of SK3 and GIRK channels to the activation of mouse vomeronasal organ. Nat Neurosci 15, 1236–1244 (2012). https://doi.org/10.1038/nn.3173

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3173

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing