Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Memory signals are temporally dissociated in and across human hippocampus and perirhinal cortex

Abstract

In the endeavor to understand how our brains enable our multifaceted memories, much controversy surrounds the contributions of the hippocampus and perirhinal cortex (PrC). We recorded functional magnetic resonance imaging (fMRI) in healthy controls and intracranial electroencephalography (EEG) in patients during a recognition memory task. Although conventional fMRI analysis showed indistinguishable roles of the hippocampus and PrC in familiarity-based item recognition and recollection-based source retrieval, event-related fMRI and EEG time courses revealed a clear temporal dissociation of memory signals in and across these regions. An early source retrieval effect was followed by a late, post-decision item novelty effect in hippocampus, whereas an early item novelty effect was followed by a sustained source retrieval effect in PrC. Although factors such as memory strength were not experimentally controlled, the temporal pattern across regions suggests that a rapid item recognition signal in PrC triggers a source retrieval process in the hippocampus, which in turn recruits PrC representations and/or mechanisms, evidenced here by increased hippocampal-PrC coupling during source recognition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Methods and design.
Figure 2: fMRI results for hippocampus and PrC.
Figure 3: iEEG results for hippocampus and PrC.
Figure 4: Temporal sequence of iEEG item and source effects in PrC and hippocampus.
Figure 5: Functional coupling between hippocampus and PrC increases during source recognition (source recognition versus item recognition).

Similar content being viewed by others

References

  1. Scoville, W.B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957).

    Article  CAS  Google Scholar 

  2. Squire, L.R., Stark, C.E. & Clark, R.E. The medial temporal lobe. Annu. Rev. Neurosci. 27, 279–306 (2004).

    Article  CAS  Google Scholar 

  3. Davachi, L. Item, context and relational episodic encoding in humans. Curr. Opin. Neurobiol. 16, 693–700 (2006).

    Article  CAS  Google Scholar 

  4. Mayes, A., Montaldi, D. & Migo, E. Associative memory and the medial temporal lobes. Trends Cogn. Sci. 11, 126–135 (2007).

    Article  Google Scholar 

  5. Johnson, M.K., Hashtroudi, S. & Lindsay, D.S. Source monitoring. Psychol. Bull. 114, 3–28 (1993).

    Article  CAS  Google Scholar 

  6. Cohen, N.J. & Eichenbaum, H.E. Memory, Amnesia and the Hippocampal System (MIT Press, Cambridge, Massachusetts, 1993).

  7. Diana, R.A., Yonelinas, A.P. & Ranganath, C. Imaging recollection and familiarity in the medial temporal lobe: a three-component model. Trends Cogn. Sci. 11, 379–386 (2007).

    Article  Google Scholar 

  8. Eichenbaum, H., Yonelinas, A.P. & Ranganath, C. The medial temporal lobe and recognition memory. Annu. Rev. Neurosci. 30, 123–152 (2007).

    Article  CAS  Google Scholar 

  9. Manns, J.R., Hopkins, R.O., Reed, J.M., Kitchener, E.G. & Squire, L.R. Recognition memory and the human hippocampus. Neuron 37, 171–180 (2003).

    Article  CAS  Google Scholar 

  10. Stark, C.E., Bayley, P.J. & Squire, L.R. Recognition memory for single items and for associations is similarly impaired following damage to the hippocampal region. Learning Mem. 9, 238–242 (2002).

    Article  Google Scholar 

  11. Squire, L.R., Wixted, J.T. & Clark, R.E. Recognition memory and the medial temporal lobe: a new perspective. Nat. Rev. Neurosci. 8, 872–883 (2007).

    Article  CAS  Google Scholar 

  12. Wais, P.E., Squire, L.R. & Wixted, J.T. In search of recollection and familiarity signals in the hippocampus. J. Cogn. Neurosci. 22, 109–123 (2010).

    Article  Google Scholar 

  13. Jacoby, L.L. A process dissociation framework: separating automatic from intentional uses of memory. J. Mem. Lang. 30, 513–541 (1991).

    Article  Google Scholar 

  14. Mandler, G. Recognizing: the judgment of previous occurrence. Psychol. Rev. 87, 252–271 (1980).

    Article  Google Scholar 

  15. Yonelinas, A.P. The nature of recollection and familiarity: a review of 30 years of research. J. Mem. Lang. 46, 441–517 (2002).

    Article  Google Scholar 

  16. McElree, B., Dolan, P.O. & Jacoby, L.L. Isolating the contributions of familiarity and source information to item recognition: A time course analysis. J. Exp. Psychol. Learn. Mem. Cogn. 25, 563–582 (1999).

    Article  CAS  Google Scholar 

  17. Curran, T. Brain potentials of recollection and familiarity. Mem. Cognit. 28, 923–938 (2000).

    Article  CAS  Google Scholar 

  18. Aggleton, J.P. & Brown, M.W. Episodic memory, amnesia and the hippocampal-anterior thalamic axis. Behav. Brain Sci. 22, 425–444 (1999).

    Article  CAS  Google Scholar 

  19. Duarte, A., Henson, R.N. & Graham, K.S. Stimulus content and the neural correlates of source memory. Brain Res. 1373, 110–123 (2011).

    Article  CAS  Google Scholar 

  20. Staresina, B.P. & Davachi, L. Object unitization and associative memory formation are supported by distinct brain regions. J. Neurosci. 30, 9890–9897 (2010).

    Article  CAS  Google Scholar 

  21. Diana, R.A., Yonelinas, A.P. & Ranganath, C. The effects of unitization on familiarity-based source memory: testing a behavioral prediction derived from neuroimaging data. J. Exp. Psychol. Learn. Mem. Cogn. 34, 730–740 (2008).

    Article  Google Scholar 

  22. Henson, R.N., Shallice, T., Josephs, O. & Dolan, R.J. Functional magnetic resonance imaging of proactive interference during spoken cued recall. Neuroimage 17, 543–558 (2002).

    Article  CAS  Google Scholar 

  23. Maris, E. & Oostenveld, R. Nonparametric statistical testing of EEG and MEG data. J. Neurosci. Methods 164, 177–190 (2007).

    Article  Google Scholar 

  24. Fell, J. et al. Human memory formation is accompanied by rhinal-hippocampal coupling and decoupling. Nat. Neurosci. 4, 1259–1264 (2001).

    Article  CAS  Google Scholar 

  25. Jutras, M.J., Fries, P. & Buffalo, E.A. Gamma-band synchronization in the macaque hippocampus and memory formation. J. Neurosci. 29, 12521–12531 (2009).

    Article  CAS  Google Scholar 

  26. Haegens, S., Nácher, V., Luna, R., Romo, R. & Jensen, O. α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking. Proc. Natl. Acad. Sci. USA 108, 19377–19382 (2011).

    Article  CAS  Google Scholar 

  27. Kirwan, C.B. & Stark, C.E. Medial temporal lobe activation during encoding and retrieval of novel face-name pairs. Hippocampus 14, 919–930 (2004).

    Article  Google Scholar 

  28. Xiang, J.Z. & Brown, M.W. Differential neuronal encoding of novelty, familiarity and recency in regions of the anterior temporal lobe. Neuropharmacology 37, 657–676 (1998).

    Article  CAS  Google Scholar 

  29. Buckner, R.L., Wheeler, M.E. & Sheridan, M.A. Encoding processes during retrieval tasks. J. Cogn. Neurosci. 13, 406–415 (2001).

    Article  CAS  Google Scholar 

  30. Stark, C.E. & Okado, Y. Making memories without trying: medial temporal lobe activity associated with incidental memory formation during recognition. J. Neurosci. 23, 6748–6753 (2003).

    Article  CAS  Google Scholar 

  31. Konkel, A. & Cohen, N.J. Relational memory and the hippocampus: representations and methods. Frontiers in Neuroscience 3, 166–174 (2009).

    Article  Google Scholar 

  32. Ludowig, E. et al. Intracranially recorded memory-related potentials reveal higher posterior than anterior hippocampal involvement in verbal encoding and retrieval. J. Cogn. Neurosci. 20, 841–851 (2008).

    Article  Google Scholar 

  33. Rutishauser, U., Schuman, E.M. & Mamelak, A.N. Activity of human hippocampal and amygdala neurons during retrieval of declarative memories. Proc. Natl. Acad. Sci. USA 105, 329–334 (2008).

    Article  CAS  Google Scholar 

  34. Viskontas, I.V., Knowlton, B.J., Steinmetz, P.N. & Fried, I. Differences in mnemonic processing by neurons in the human hippocampus and parahippocampal regions. J. Cogn. Neurosci. 18, 1654–1662 (2006).

    Article  Google Scholar 

  35. Axmacher, N. et al. Intracranial EEG correlates of expectancy and memory formation in the human hippocampus and nucleus accumbens. Neuron 65, 541–549 (2010).

    Article  CAS  Google Scholar 

  36. Köhler, S., Danckert, S., Gati, J.S. & Menon, R.S. Novelty responses to relational and non relational information in the hippocampus and the parahippocampal region: A comparison based on event related fMRI. Hippocampus 15, 763–774 (2005).

    Article  Google Scholar 

  37. Kumaran, D. & Maguire, E.A. Novelty signals: a window into hippocampal information processing. Trends Cogn. Sci. 13, 47–54 (2009).

    Article  Google Scholar 

  38. Grunwald, T. et al. Dissecting out conscious and unconscious memory (sub)processes within the human medial temporal lobe. Neuroimage 20 (suppl. 1), S139–S145 (2003).

    Article  Google Scholar 

  39. Meunier, M., Bachevalier, J., Mishkin, M. & Murray, E.A. Effects on visual recognition of combined and separate ablations of the entorhinal and PrC in rhesus monkeys. J. Neurosci. 13, 5418–5432 (1993).

    Article  CAS  Google Scholar 

  40. Murray, E.A. & Richmond, B.J. Role of PrC in object perception, memory, and associations. Curr. Opin. Neurobiol. 11, 188–193 (2001).

    Article  CAS  Google Scholar 

  41. Gonsalves, B.D., Kahn, I., Curran, T., Norman, K.A. & Wagner, A.D. Memory strength and repetition suppression: multimodal imaging of medial temporal cortical contributions to recognition. Neuron 47, 751–761 (2005).

    Article  CAS  Google Scholar 

  42. Henson, R.N., Cansino, S., Herron, J., Robb, W. & Rugg, M. A familiarity signal in human anterior medial temporal cortex? Hippocampus 13, 301–304 (2003).

    Article  CAS  Google Scholar 

  43. Montaldi, D., Spencer, T.J., Roberts, N. & Mayes, A.R. The neural system that mediates familiarity memory. Hippocampus 16, 504–520 (2006).

    Article  Google Scholar 

  44. Grunwald, T., Lehnertz, K., Heinze, H.J., Helmstaedter, C. & Elger, C.E. Verbal novelty detection within the human hippocampus proper. Proc. Natl. Acad. Sci. USA 95, 3193–3197 (1998).

    Article  CAS  Google Scholar 

  45. Buckley, M.J. & Gaffan, D. Perirhinal cortex ablation impairs configural learning and paired-associate learning equally. Neuropsychologia 36, 535–546 (1998).

    Article  CAS  Google Scholar 

  46. Higuchi, S. & Miyashita, Y. Formation of mnemonic neuronal responses to visual paired associates in inferotemporal cortex is impaired by perirhinal and entorhinal lesions. Proc. Natl. Acad. Sci. USA 93, 739–743 (1996).

    Article  CAS  Google Scholar 

  47. Staresina, B.P. & Davachi, L. Differential encoding mechanisms for subsequent associative recognition and free recall. J. Neurosci. 26, 9162–9172 (2006).

    Article  CAS  Google Scholar 

  48. Diana, R.A., Yonelinas, A.P. & Ranganath, C. Medial temporal lobe activity during source retrieval reflects information type, not memory strength. J. Cogn. Neurosci. 22, 1808–1818 (2010).

    Article  Google Scholar 

  49. Takeuchi, D., Hirabayashi, T., Tamura, K. & Miyashita, Y. Reversal of interlaminar signal between sensory and memory processing in monkey temporal cortex. Science 331, 1443–1447 (2011).

    Article  CAS  Google Scholar 

  50. Gelbard-Sagiv, H., Mukamel, R., Harel, M., Malach, R. & Fried, I. Internally generated reactivation of single neurons in human hippocampus during free recall. Science 322, 96–101 (2008).

    Article  CAS  Google Scholar 

  51. Brainard, D.H. The Psychophysics Toolbox. Spat. Vis. 10, 433–436 (1997).

    Article  CAS  Google Scholar 

  52. Stark, C.E. & Squire, L.R. When zero is not zero: the problem of ambiguous baseline conditions in fMRI. Proc. Natl. Acad. Sci. USA 98, 12760–12766 (2001).

    Article  CAS  Google Scholar 

  53. Dale, A.M. Optimal experimental design for event-related fMRI. Hum. Brain Mapp. 8, 109–114 (1999).

    Article  CAS  Google Scholar 

  54. Insausti, R. et al. MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. AJNR Am. J. Neuroradiol. 19, 659–671 (1998).

    CAS  PubMed  Google Scholar 

  55. Brett, M., Anton, J.-L., Valabregue, R. & Poline, J.-B. Region of interest analysis using an SPM toolbox [abstract]. in 8th Int. Conf. on Functional Mapping of the Human Brain (eds. R. Kawashima, H. Sakata, K. Nakamura & M. Taira) (Academic Press, 2002).

  56. McCarthy, G., Nobre, A.C., Bentin, S. & Spencer, D.D. Language-related field potentials in the anterior-medial temporal lobe. I. Intracranial distribution and neural generators. J. Neurosci. 15, 1080–1089 (1995).

    Article  CAS  Google Scholar 

  57. Smith, M.E., Stapleton, J.M. & Halgren, E. Human medial temporal lobe potentials evoked in memory and language tasks. Electroencephalogr. Clin. Neurophysiol. 63, 145–159 (1986).

    Article  CAS  Google Scholar 

  58. Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J.M. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 156869 (2011).

    Article  Google Scholar 

  59. Jokisch, D. & Jensen, O. Modulation of gamma and alpha activity during a working memory task engaging the dorsal or ventral stream. J. Neurosci. 27, 3244–3251 (2007).

    Article  CAS  Google Scholar 

  60. Meeuwissen, E.B., Takashima, A., Fernández, G. & Jensen, O. Increase in posterior alpha activity during rehearsal predicts successful long-term memory formation of word sequences. Hum. Brain Mapp. 32, 2045–2053 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Greve for helpful discussion. This work was supported by a Sir Henry Wellcome Postdoctoral Fellowship to B.P.S., the UK Medical Research Council Program (MC_A060_5PR10 to R.N.H.) and the German Research Foundation (DFG FE 366/5-1 to A.T.A.D.L.)

Author information

Authors and Affiliations

Authors

Contributions

B.P.S. and R.N.H. designed the research. B.P.S., N.A., J.F. and R.N.H. wrote the manuscript. B.P.S. conducted the experiments and analyzed the data. A.T.A.D.L. assisted in conducting the iEEG experiments.

Corresponding author

Correspondence to Bernhard P Staresina.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, Supplementary Tables 1 and 2, and Supplementary Results (PDF 842 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staresina, B., Fell, J., Do Lam, A. et al. Memory signals are temporally dissociated in and across human hippocampus and perirhinal cortex. Nat Neurosci 15, 1167–1173 (2012). https://doi.org/10.1038/nn.3154

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3154

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing