Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Prion propagation, toxicity and degradation

Abstract

Prion science has been on a rollercoaster for two decades. In the mid 1990s, the specter of mad cow disease (bovine spongiform encephalopathy, BSE) provoked an unprecedented public scare that was first precipitated by the realization that this animal prion disease could be transmitted to humans and then rekindled by the evidence that BSE-infected humans could pass on the infection through blood transfusions. Along with the gradual disappearance of BSE, the interest in prions has waned with the general public, funding agencies and prospective PhD students. In the past few years, however, a bewildering variety of diseases have been found to share features with prion infections, including cell-to-cell transmission. Here we review these developments and summarize those open questions that we currently deem most interesting in prion biology: how do prions damage their hosts, and how do hosts attempt to neutralize invading prions?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prion kinetics.
Figure 2: PrP-mediated amyloid toxicity.

Similar content being viewed by others

References

  1. Büeler, H. et al. Mice devoid of PrP are resistant to scrapie. Cell 73, 1339–1347 (1993).

    Article  Google Scholar 

  2. Prusiner, S.B. Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144 (1982).

    Article  CAS  Google Scholar 

  3. Knowles, T.P. et al. An analytical solution to the kinetics of breakable filament assembly. Science 326, 1533–1537 (2009).

    Article  CAS  Google Scholar 

  4. Saborio, G.P., Permanne, B. & Soto, C. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411, 810–813 (2001).

    Article  CAS  Google Scholar 

  5. Castilla, J., Saa, P., Hetz, C. & Soto, C. In vitro generation of infectious scrapie prions. Cell 121, 195–206 (2005).

    Article  CAS  Google Scholar 

  6. Deleault, N.R., Harris, B.T., Rees, J.R. & Supattapone, S. Formation of native prions from minimal components in vitro. Proc. Natl. Acad. Sci. USA 104, 9741–9746 (2007).

    Article  CAS  Google Scholar 

  7. Wang, F., Wang, X., Yuan, C.G. & Ma, J. Generating a prion with bacterially expressed recombinant prion protein. Science 327, 1132–1135 (2010).

    Article  CAS  Google Scholar 

  8. Lesné, S. et al. A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440, 352–357 (2006).

    Article  Google Scholar 

  9. Shankar, G.M. et al. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat. Med. 14, 837–842 (2008).

    Article  CAS  Google Scholar 

  10. Laurén, J., Gimbel, D.A., Nygaard, H.B., Gilbert, J.W. & Strittmatter, S.M. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457, 1128–1132 (2009).

    Article  Google Scholar 

  11. Riek, R., Hornemann, S., Wider, G., Glockshuber, R. & Wüthrich, K. NMR characterization of the full-length recombinant murine prion protein, mPrP(23–231). FEBS Lett 413, 282–288 (1997).

    Article  CAS  Google Scholar 

  12. Balducci, C. et al. Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein. Proc. Natl. Acad. Sci. USA 107, 2295–2300 (2010).

    Article  CAS  Google Scholar 

  13. Cissé, M. et al. Ablation of cellular prion protein does not ameliorate abnormal neural network activity or cognitive dysfunction in the J20 line of human amyloid precursor protein transgenic mice. J. Neurosci. 31, 10427–10431 (2011).

    Article  Google Scholar 

  14. Calella, A.M. et al. Prion protein and Abeta-related synaptic toxicity impairment. EMBO Mol. Med. 2, 306–314 (2010).

    Article  CAS  Google Scholar 

  15. Gimbel, D.A. et al. Memory impairment in transgenic Alzheimer mice requires cellular prion protein. J. Neurosci. 30, 6367–6374 (2010).

    Article  CAS  Google Scholar 

  16. Freir, D.B. et al. Interaction between prion protein and toxic amyloid β assemblies can be therapeutically targeted at multiple sites. Nat. Commun. 2, 336 (2011).

    Article  Google Scholar 

  17. Barry, A.E. et al. Alzheimer's disease brain-derived amyloid-β-mediated inhibition of LTP in vivo is prevented by immunotargeting cellular prion protein. J. Neurosci. 31, 7259–7263 (2011).

    Article  CAS  Google Scholar 

  18. Benilova, I., Karran, E. & De Strooper, B. The toxic Abeta oligomer and Alzheimer's disease: an emperor in need of clothes. Nat. Neurosci. 15, 349–357 (2012).

    Article  CAS  Google Scholar 

  19. Brandner, S. et al. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379, 339–343 (1996).

    Article  CAS  Google Scholar 

  20. Mallucci, G. et al. Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302, 871–874 (2003).

    Article  CAS  Google Scholar 

  21. Chesebro, B. et al. Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science 308, 1435–1439 (2005).

    Article  CAS  Google Scholar 

  22. Solforosi, L. et al. Cross-linking cellular prion protein triggers neuronal apoptosis in vivo. Science 303, 1514–1516 (2004).

    Article  CAS  Google Scholar 

  23. Shmerling, D. et al. Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell 93, 203–214 (1998).

    Article  CAS  Google Scholar 

  24. Sandberg, M.K., Al-Doujaily, H., Sharps, B., Clarke, A.R. & Collinge, J. Prion propagation and toxicity in vivo occur in two distinct mechanistic phases. Nature 470, 540–542 (2011).

    Article  CAS  Google Scholar 

  25. Büeler, H. et al. High prion and PrPSc levels but delayed onset of disease in scrapie-inoculated mice heterozygous for a disrupted PrP gene. Mol. Med. 1, 19–30 (1994).

    Article  Google Scholar 

  26. Stöhr, J. et al. Spontaneous generation of anchorless prions in transgenic mice. Proc. Natl. Acad. Sci. USA 108, 21223–21228 (2011).

    Article  Google Scholar 

  27. Aguzzi, A. & Calella, A.M. Prions: protein aggregation and infectious diseases. Physiol. Rev. 89, 1105–1152 (2009).

    Article  CAS  Google Scholar 

  28. Khosravani, H. et al. Prion protein attenuates excitotoxicity by inhibiting NMDA receptors. J. Cell Biol. 181, 551–565 (2008).

    Article  CAS  Google Scholar 

  29. You, H. et al. Abeta neurotoxicity depends on interactions between copper ions, prion protein and N-methyl-D-aspartate receptors. Proc. Natl. Acad. Sci. USA 109, 1737–1742 (2012).

    Article  CAS  Google Scholar 

  30. Ma, J. & Lindquist, S. Wild-type PrP and a mutant associated with prion disease are subject to retrograde transport and proteasome degradation. Proc. Natl. Acad. Sci. USA 98, 14955–14960 (2001).

    Article  CAS  Google Scholar 

  31. Hegde, R.S. et al. A transmembrane form of the prion protein in neurodegenerative disease. Science 279, 827–834 (1998).

    Article  CAS  Google Scholar 

  32. Chakrabarti, O. & Hegde, R.S. Functional depletion of mahogunin by cytosolically exposed prion protein contributes to neurodegeneration. Cell 137, 1136–1147 (2009).

    Article  CAS  Google Scholar 

  33. Aguzzi, A. & Steele, A.D. Prion topology and toxicity. Cell 137, 994–996 (2009).

    Article  CAS  Google Scholar 

  34. Behrens, A. & Aguzzi, A. Small is not beautiful: antagonizing functions for the prion protein PrP(C) and its homologue Dpl. Trends Neurosci. 25, 150–154 (2002).

    Article  CAS  Google Scholar 

  35. Solomon, I.H., Huettner, J.E. & Harris, D.A. Neurotoxic mutants of the prion protein induce spontaneous ionic currents in cultured cells. J. Biol. Chem. 285, 26719–26726 (2010).

    Article  CAS  Google Scholar 

  36. Solomon, I.H. et al. An N-terminal polybasic domain and cell surface localization are required for mutant prion protein toxicity. J. Biol. Chem. 286, 14724–14736 (2011).

    Article  CAS  Google Scholar 

  37. Solomon, I.H., Biasini, E. & Harris, D.A. Ion channels induced by the prion protein: mediators of neurotoxicity. Prion 6, 40–45 (2012).

    Article  CAS  Google Scholar 

  38. Bellinger-Kawahara, C., Cleaver, J.E., Diener, T.O. & Prusiner, S.B. Purified scrapie prions resist inactivation by UV irradiation. J. Virol. 61, 159–166 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Brown, P. & Gajdusek, D.C. Survival of scrapie virus after 3 years' interment. Lancet 337, 269–270 (1991).

    Article  CAS  Google Scholar 

  40. Peretz, D. et al. Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature 412, 739–743 (2001).

    Article  CAS  Google Scholar 

  41. Safar, J.G. et al. Prion clearance in bigenic mice. J. Gen. Virol. 86, 2913–2923 (2005).

    Article  CAS  Google Scholar 

  42. Chernoff, Y.O., Lindquist, S.L., Ono, B., Inge Vechtomov, S.G. & Liebman, S.W. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor. Science 268, 880–884 (1995).

    Article  CAS  Google Scholar 

  43. Luhr, K.M. et al. Scrapie protein degradation by cysteine proteases in CD11c(+) dendritic cells and GT1-1 neuronal cells. J. Virol. 78, 4776–4782 (2004).

    Article  CAS  Google Scholar 

  44. Beringue, V. et al. Role of spleen macrophages in the clearance of scrapie agent early in pathogenesis. J. Pathol. 190, 495–502 (2000).

    Article  CAS  Google Scholar 

  45. Falsig, J. et al. A versatile prion replication assay in organotypic brain slices. Nat. Neurosci. 11, 109–117 (2008).

    Article  CAS  Google Scholar 

  46. Flores-Langarica, A., Sebti, Y., Mitchell, D.A., Sim, R.B. & MacPherson, G.G. Scrapie pathogenesis: the role of complement C1q in scrapie agent uptake by conventional dendritic cells. J. Immunol. 182, 1305–1313 (2009).

    Article  CAS  Google Scholar 

  47. Baker, C.A., Martin, D. & Manuelidis, L. Microglia from Creutzfeldt-Jakob disease–infected brains are infectious and show specific mRNA activation profiles. J. Virol. 76, 10905–10913 (2002).

    Article  CAS  Google Scholar 

  48. Kranich, J. et al. Engulfment of cerebral apoptotic bodies controls the course of prion disease in a mouse strain–dependent manner. J. Exp. Med. 207, 2271–2281 (2010).

    Article  CAS  Google Scholar 

  49. Ghaemmaghami, S. et al. Cell division modulates prion accumulation in cultured cells. Proc. Natl. Acad. Sci. USA 104, 17971–17976 (2007).

    Article  CAS  Google Scholar 

  50. Mahal, S.P. et al. Prion strain discrimination in cell culture: the cell panel assay. Proc. Natl. Acad. Sci. USA 104, 20908–20913 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.A. is the recipient of an Advanced Grant of the European Research Council and is supported by grants from the European Union (PRIORITY, LUPAS), the Swiss National Foundation, the National Competence Center on Neural Plasticity and Repair, the Stammbach Foundation, and the Novartis Research Foundation. J.F. is supported by a grant from the Swiss Center of Transgenic Expertise and by a career development award of the University of Zürich.

Author information

Authors and Affiliations

Authors

Contributions

The concepts discussed here were developed by A.A. and discussed with J.F. A.A. and J.F. both wrote the manuscript.

Corresponding author

Correspondence to Adriano Aguzzi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguzzi, A., Falsig, J. Prion propagation, toxicity and degradation. Nat Neurosci 15, 936–939 (2012). https://doi.org/10.1038/nn.3120

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3120

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing