Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans

Abstract

In the adult mammalian CNS, chondroitin sulfate proteoglycans (CSPGs) and myelin-associated inhibitors (MAIs) stabilize neuronal structure and restrict compensatory sprouting following injury. The Nogo receptor family members NgR1 and NgR2 bind to MAIs and have been implicated in neuronal inhibition. We found that NgR1 and NgR3 bind with high affinity to the glycosaminoglycan moiety of proteoglycans and participate in CSPG inhibition in cultured neurons. Nogo receptor triple mutants (Ngr1−/−; Ngr2−/−; Ngr3−/−; which are also known as Rtn4r, Rtn4rl2 and Rtn4rl1, respectively), but not single mutants, showed enhanced axonal regeneration following retro-orbital optic nerve crush injury. The combined loss of Ngr1 and Ngr3 (Ngr1−/−; Ngr3−/−), but not Ngr1 and Ngr2 (Ngr1−/−; Ngr2−/−), was sufficient to mimic the triple mutant regeneration phenotype. Regeneration in Ngr1−/−; Ngr3−/− mice was further enhanced by simultaneous ablation of Rptpσ (also known as Ptprs), a known CSPG receptor. Collectively, our results identify NgR1 and NgR3 as CSPG receptors, suggest that there is functional redundancy among CSPG receptors, and provide evidence for shared mechanisms of MAI and CSPG inhibition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of all three NgRs results in enhanced growth on CNS myelin.
Figure 2: NgR1 and NgR3, but not NgR2, contain two discontinuous and evolutionarily conserved sequence motifs that are necessary for binding to brain tissue.
Figure 3: NgR1 and NgR3 interact directly with specific GAGs.
Figure 4: Binding sites for MAIs and CSPGs on NgR1 are distinct and dissociable.
Figure 5: Nogo receptors mediate CSPG inhibition.
Figure 6: Binding of soluble NgR1-Fc and NgR3-Fc to optic nerve is enhanced by injury.
Figure 7: Retinal stratification, optic nerve myelination and RGC central projections appear to be normal in Ngr1−/−; Ngr2−/−; Ngr3−/− mice.
Figure 8: Ngr1−/−; Ngr2−/−; Ngr3−/− and Ngr1−/−; Ngr3−/−; Rptpσ−/− compound mutants show enhanced fiber regeneration following crush injury to the optic nerve.

Similar content being viewed by others

References

  1. Park, K.K. et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322, 963–966 (2008).

    Article  CAS  Google Scholar 

  2. Liu, B.P., Cafferty, W.B., Budel, S.O. & Strittmatter, S.M. Extracellular regulators of axonal growth in the adult central nervous system. Phil. Trans. R. Soc. Lond. B. 361, 1593–1610 (2006).

    Article  CAS  Google Scholar 

  3. Winzeler, A.M. et al. The lipid sulfatide is a novel myelin-associated inhibitor of CNS axon outgrowth. J. Neurosci. 31, 6481–6492 (2011).

    Article  CAS  Google Scholar 

  4. Silver, J. & Miller, J.H. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5, 146–156 (2004).

    Article  CAS  Google Scholar 

  5. Bregman, B.S. et al. Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature 378, 498–501 (1995).

    Article  CAS  Google Scholar 

  6. Li, S. et al. Blockade of Nogo-66, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein by soluble Nogo-66 receptor promotes axonal sprouting and recovery after spinal injury. J. Neurosci. 24, 10511–10520 (2004).

    Article  CAS  Google Scholar 

  7. Bradbury, E.J. et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416, 636–640 (2002).

    Article  CAS  Google Scholar 

  8. García-Alías, G., Barkhuysen, S., Buckle, M. & Fawcett, J.W. Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nat. Neurosci. 12, 1145–1151 (2009).

    Article  Google Scholar 

  9. Massey, J.M. et al. Chondroitinase ABC digestion of the perineuronal net promotes functional collateral sprouting in the cuneate nucleus after cervical spinal cord injury. J. Neurosci. 26, 4406–4414 (2006).

    Article  CAS  Google Scholar 

  10. Atwal, J.K. et al. PirB is a functional receptor for myelin inhibitors of axonal regeneration. Science 322, 967–970 (2008).

    Article  CAS  Google Scholar 

  11. Fournier, A.E., GrandPre, T. & Strittmatter, S.M. Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409, 341–346 (2001).

    Article  CAS  Google Scholar 

  12. Venkatesh, K. et al. The Nogo-66 receptor homolog NgR2 is a sialic acid–dependent receptor selective for myelin-associated glycoprotein. J. Neurosci. 25, 808–822 (2005).

    Article  CAS  Google Scholar 

  13. Chivatakarn, O., Kaneko, S., He, Z., Tessier-Lavigne, M. & Giger, R.J. The Nogo-66 receptor NgR1 is required only for the acute growth cone-collapsing but not the chronic growth-inhibitory actions of myelin inhibitors. J. Neurosci. 27, 7117–7124 (2007).

    Article  CAS  Google Scholar 

  14. Kim, J.E., Liu, B.P., Park, J.H. & Strittmatter, S.M. Nogo-66 receptor prevents raphespinal and rubrospinal axon regeneration and limits functional recovery from spinal cord injury. Neuron 44, 439–451 (2004).

    Article  CAS  Google Scholar 

  15. Zheng, B. et al. Genetic deletion of the Nogo receptor does not reduce neurite inhibition in vitro or promote corticospinal tract regeneration in vivo. Proc. Natl. Acad. Sci. USA 102, 1205–1210 (2005).

    Article  CAS  Google Scholar 

  16. Sivasankaran, R. et al. PKC mediates inhibitory effects of myelin and chondroitin sulfate proteoglycans on axonal regeneration. Nat. Neurosci. 7, 261–268 (2004).

    Article  CAS  Google Scholar 

  17. Schweigreiter, R. et al. Versican V2 and the central inhibitory domain of Nogo-A inhibit neurite growth via p75NTR/NgR-independent pathways that converge at RhoA. Mol. Cell. Neurosci. 27, 163–174 (2004).

    Article  CAS  Google Scholar 

  18. Kantor, D.B. et al. Semaphorin 5A is a bifunctional axon guidance cue regulated by heparan and chondroitin sulfate proteoglycans. Neuron 44, 961–975 (2004).

    Article  CAS  Google Scholar 

  19. Rhodes, K.E. & Fawcett, J.W. Chondroitin sulphate proteoglycans: preventing plasticity or protecting the CNS? J. Anat. 204, 33–48 (2004).

    Article  CAS  Google Scholar 

  20. McKeon, R.J., Hoke, A. & Silver, J. Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp. Neurol. 136, 32–43 (1995).

    Article  CAS  Google Scholar 

  21. Pizzorusso, T. et al. Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298, 1248–1251 (2002).

    Article  CAS  Google Scholar 

  22. Houle, J.D. et al. Combining an autologous peripheral nervous system “bridge” and matrix modification by chondroitinase allows robust, functional regeneration beyond a hemisection lesion of the adult rat spinal cord. J. Neurosci. 26, 7405–7415 (2006).

    Article  CAS  Google Scholar 

  23. Powell, E.M., Mercado, M.L., Calle-Patino, Y. & Geller, H.M. Protein kinase C mediates neurite guidance at an astrocyte boundary. Glia 33, 288–297 (2001).

    Article  CAS  Google Scholar 

  24. Shen, Y. et al. PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 326, 592–596 (2009).

    Article  CAS  Google Scholar 

  25. Aricescu, A.R., McKinnell, I.W., Halfter, W. & Stoker, A.W. Heparan sulfate proteoglycans are ligands for receptor protein tyrosine phosphatase sigma. Mol. Cell. Biol. 22, 1881–1892 (2002).

    Article  CAS  Google Scholar 

  26. Fry, E.J., Chagnon, M.J., Lopez-Vales, R., Tremblay, M.L. & David, S. Corticospinal tract regeneration after spinal cord injury in receptor protein tyrosine phosphatase sigma–deficient mice. Glia 58, 423–433 (2010).

    PubMed  Google Scholar 

  27. Sapieha, P.S. et al. Receptor protein tyrosine phosphatase sigma inhibits axon regrowth in the adult injured CNS. Mol. Cell. Neurosci. 28, 625–635 (2005).

    Article  CAS  Google Scholar 

  28. Lee, J.K. et al. Assessing spinal axon regeneration and sprouting in Nogo-, MAG- and OMgp-deficient mice. Neuron 66, 663–670 (2010).

    Article  CAS  Google Scholar 

  29. Cafferty, W.B., Duffy, P., Huebner, E. & Strittmatter, S.M. MAG and OMgp synergize with Nogo-A to restrict axonal growth and neurological recovery after spinal cord trauma. J. Neurosci. 30, 6825–6837 (2010).

    Article  CAS  Google Scholar 

  30. Yamashita, T., Fujitani, M., Yamagishi, S., Hata, K. & Mimura, F. Multiple signals regulate axon regeneration through the Nogo receptor complex. Mol. Neurobiol. 32, 105–111 (2005).

    Article  CAS  Google Scholar 

  31. Williams, G. et al. Ganglioside inhibition of neurite outgrowth requires Nogo receptor function: identification of interaction sites and development of novel antagonists. J. Biol. Chem. 283, 16641–16652 (2008).

    Article  CAS  Google Scholar 

  32. Barton, W.A. et al. Structure and axon outgrowth inhibitor binding of the Nogo-66 receptor and related proteins. EMBO J. 22, 3291–3302 (2003).

    Article  CAS  Google Scholar 

  33. Zhang, L., Kuang, X. & Zhang, J. Nogo receptor 3, a paralog of Nogo-66 receptor 1 (NgR1), may function as a NgR1 co-receptor for Nogo-66. J. Genet. Genomics 38, 515–523 (2011).

    Article  CAS  Google Scholar 

  34. Ohlsson, M., Mattsson, P. & Svensson, M. A temporal study of axonal degeneration and glial scar formation following a standardized crush injury of the optic nerve in the adult rat. Restor. Neurol. Neurosci. 22, 1–10 (2004).

    PubMed  Google Scholar 

  35. Yin, Y. et al. Oncomodulin links inflammation to optic nerve regeneration. Proc. Natl. Acad. Sci. USA 106, 19587–19592 (2009).

    Article  CAS  Google Scholar 

  36. Leibinger, M. et al. Neuroprotective and axon growth-promoting effects following inflammatory stimulation on mature retinal ganglion cells in mice depend on ciliary neurotrophic factor and leukemia inhibitory factor. J. Neurosci. 29, 14334–14341 (2009).

    Article  Google Scholar 

  37. Fisher, D. et al. Leukocyte common antigen-related phosphatase is a functional receptor for chondroitin sulfate proteoglycan axon growth inhibitors. J. Neurosci. 31, 14051–14066 (2011).

    Article  CAS  Google Scholar 

  38. Fischer, D., He, Z. & Benowitz, L.I. Counteracting the Nogo receptor enhances optic nerve regeneration if retinal ganglion cells are in an active growth state. J. Neurosci. 24, 1646–1651 (2004).

    Article  CAS  Google Scholar 

  39. Fischer, D., Petkova, V., Thanos, S. & Benowitz, L.I. Switching mature retinal ganglion cells to a robust growth state in vivo: gene expression and synergy with RhoA inactivation. J. Neurosci. 24, 8726–8740 (2004).

    Article  CAS  Google Scholar 

  40. Kadoya, K. et al. Combined intrinsic and extrinsic neuronal mechanisms facilitate bridging axonal regeneration one year after spinal cord injury. Neuron 64, 165–172 (2009).

    Article  CAS  Google Scholar 

  41. Fujita, Y., Endo, S., Takai, T. & Yamashita, T. Myelin suppresses axon regeneration by PIR-B/SHP–mediated inhibition of Trk activity. EMBO J. 30, 1389–1401 (2011).

    Article  CAS  Google Scholar 

  42. Niederöst, B.P., Zimmermann, D.R., Schwab, M.E. & Bandtlow, C.E. Bovine CNS myelin contains neurite growth-inhibitory activity associated with chondroitin sulfate proteoglycans. J. Neurosci. 19, 8979–8989 (1999).

    Article  Google Scholar 

  43. Shypitsyna, A., Malaga-Trillo, E., Reuter, A. & Stuermer, C.A. Origin of Nogo-A by domain shuffling in an early jawed vertebrate. Mol. Biol. Evol. 28, 1363–1370 (2010).

    Article  Google Scholar 

  44. McGee, A.W., Yang, Y., Fischer, Q.S., Daw, N.W. & Strittmatter, S.M. Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor. Science 309, 2222–2226 (2005).

    Article  CAS  Google Scholar 

  45. Lee, H. et al. Synaptic function for the Nogo-66 receptor NgR1: regulation of dendritic spine morphology and activity-dependent synaptic strength. J. Neurosci. 28, 2753–2765 (2008).

    Article  CAS  Google Scholar 

  46. Zagrebelsky, M., Schweigreiter, R., Bandtlow, C.E., Schwab, M.E. & Korte, M. Nogo-A stabilizes the architecture of hippocampal neurons. J. Neurosci. 30, 13220–13234 (2010).

    Article  CAS  Google Scholar 

  47. Raiker, S.J. et al. Oligodendrocyte-myelin glycoprotein and Nogo negatively regulate activity-dependent synaptic plasticity. J. Neurosci. 30, 12432–12445 (2010).

    Article  CAS  Google Scholar 

  48. Karlén, A. et al. Nogo receptor 1 regulates formation of lasting memories. Proc. Natl. Acad. Sci. USA 106, 20476–20481 (2009).

    Article  Google Scholar 

  49. Briani, C., Berger, J.S. & Latov, N. Antibodies to chondroitin sulfate C: a new detection assay and correlations with neurological diseases. J. Neuroimmunol. 84, 117–121 (1998).

    Article  CAS  Google Scholar 

  50. Robak, L.A. et al. Molecular basis of the interactions of the Nogo-66 receptor and its homolog NgR2 with myelin-associated glycoprotein: development of NgROMNI-Fc, a novel antagonist of CNS myelin inhibition. J. Neurosci. 29, 5768–5783 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Tremblay for Rptpσ−/− mice, M. Greenberg for Ngr3−/− mice, B. Pierchala for p75NTR−/− mice, B. Bates, D. Howland and M.L. Mercado for their assistance in the generation and initial analysis of Ngr1−/−; Ngr2−/−; Ngr3−/− mice, U. Rutishauser for Endo-N, D. Figge and Y. Yasui for assistance in ELISA binding assays, Y. Yin for training in optic nerve surgery, Y. Duan for generation of the RPTPσ(Ig1–3)-Fc construct, J. Barbieri for technical assistance and M.M. Zaleska for project administration. This work was supported by Neuroscience Training Grant T32EY017878 and the University of Michigan Rackham Merit Fellowship (T.L.D.), Cellular and Molecular Biology Training Grant T32GM007315 (K.T.B. and Y.A.M.), National Research Service Award Ruth Kirschstein Fellowship F31NS061589 (S.J.R.), the New York State Spinal Cord Injury Research Program, the Dr. Miriam and Sheldon G. Adelson Medical Foundation on Neural Repair and Rehabilitation, the US Department of Veterans Affairs (1I01RX000229-01), the National Institute of Neurological Disorders and Stroke (R56NS047333, R.J.G.) and the National Eye Institute (L.I.B.).

Author information

Authors and Affiliations

Authors

Contributions

R.J.G. conceived the study. T.L.D., L.I.B., H.M.G. and R.J.G. designed the experiments. T.L.D., K.T.B., Y.A.M., Y. Koriyama, S.J.R., C.D.L., Y. Katagiri and R.J.G. performed the experiments. T.L.D., K.T.B. and Y. Koriyama contributed to data analysis and figure preparation. K.L.A., A.W., C.G.G. and B.Z. generated and provided mice or reagents for the study, T.L.D. and R.J.G. wrote the manuscript. All of the authors read and agreed on the final version of the manuscript.

Corresponding author

Correspondence to Roman J Giger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Table 1 (PDF 1797 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickendesher, T., Baldwin, K., Mironova, Y. et al. NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans. Nat Neurosci 15, 703–712 (2012). https://doi.org/10.1038/nn.3070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3070

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing