Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

N-terminally cleaved Bcl-xL mediates ischemia-induced neuronal death

Abstract

Transient global ischemia in rats induces delayed death of hippocampal CA1 neurons. Early events include caspase activation, cleavage of anti-death Bcl-2 family proteins and large mitochondrial channel activity. However, whether these events have a causal role in ischemia-induced neuronal death is unclear. We found that the Bcl-2 and Bcl-xL inhibitor ABT-737, which enhances death of tumor cells, protected rats against neuronal death in a clinically relevant model of brain ischemia. Bcl-xL is prominently expressed in adult neurons and can be cleaved by caspases to generate a pro-death fragment, ΔN-Bcl-xL. We found that ABT-737 administered before or after ischemia inhibited ΔN-Bcl-xL–induced mitochondrial channel activity and neuronal death. To establish a causal role for ΔN-Bcl-xL, we generated knock-in mice expressing a caspase-resistant form of Bcl-xL. The knock-in mice exhibited markedly reduced mitochondrial channel activity and reduced vulnerability to ischemia-induced neuronal death. These findings suggest that truncated Bcl-xL could be a potentially important therapeutic target in ischemic brain injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Treatment with the Bcl-xL inhibitor ABT-737 protects against ischemia-induced neuronal death in the CA1.
Figure 2: The Bcl-xL inhibitor ABT-737 blocks ischemia-induced mitochondrial channel formation.
Figure 3: ABT-737 directly attenuates channel activity in post-ischemic mitochondria.
Figure 4: Pretreatment of animals with ABT-737 attenuates ischemia-induced cleavage of Bcl-xL.
Figure 5: ABT-737 attenuates ΔN61-Bcl-xL–elicited channel activity and cytochrome c release.
Figure 6: ΔN-Bcl-xL induces cell death in hippocampal neurons and Bax−/−; Bak−/− MEFs.
Figure 7: Bcl-xL cleavage-resistant mice are protected against ischemia-induced neuronal death.

Similar content being viewed by others

References

  1. Moskowitz, M.A., Lo, E.H. & Iadecola, C. The science of stroke: mechanisms in search of treatments. Neuron 67, 181–198 (2010).

    Article  CAS  Google Scholar 

  2. Zukin, R.S. et al. Molecular and cellular mechanisms of ischemia-induced neuronal death. in Stroke: Pathophysiology, Diagnosis and Management (eds. Mohr, J.P., Choi, D.W., Grotta, J.C., Weir, B. & Wolf, P.A.) 829–854 (Churchill Livingstone Elsevier, Philadelphia, 2004).

  3. Liou, A.K., Clark, R.S., Henshall, D.C., Yin, X.M. & Chen, J. To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways. Prog. Neurobiol. 69, 103–142 (2003).

    Article  CAS  Google Scholar 

  4. Sugawara, T., Fujimura, M., Morita-Fujimura, Y., Kawase, M. & Chan, P.H. Mitochondrial release of cytochrome c corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia. J. Neurosci. 19, RC39 (1999).

    Article  CAS  Google Scholar 

  5. Tanaka, H. et al. Ischemic preconditioning: neuronal survival in the face of caspase-3 activation. J. Neurosci. 24, 2750–2759 (2004).

    Article  CAS  Google Scholar 

  6. Miyawaki, T. et al. Ischemic preconditioning blocks BAD translocation, Bcl-xL cleavage, and large channel activity in mitochondria of postischemic hippocampal neurons. Proc. Natl. Acad. Sci. USA 105, 4892–4897 (2008).

    Article  CAS  Google Scholar 

  7. Yuan, J. Neuroprotective strategies targeting apoptotic and necrotic cell death for stroke. Apoptosis 14, 469–477 (2009).

    Article  Google Scholar 

  8. Youle, R.J. & Strasser, A. The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 9, 47–59 (2008).

    Article  CAS  Google Scholar 

  9. Galonek, H.L. & Hardwick, J.M. Upgrading the BCL-2 network. Nat. Cell Biol. [comment] 8, 1317–1319 (2006).

    Article  CAS  Google Scholar 

  10. Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumors. Nature 435, 677–681 (2005).

    Article  CAS  Google Scholar 

  11. Richardson, A. & Kaye, S.B. Pharmacological inhibition of the Bcl-2 family of apoptosis regulators as cancer therapy. Curr. Mol. Pharmacol. 1, 244–254 (2008).

    Article  CAS  Google Scholar 

  12. Cragg, M.S., Harris, C., Strasser, A. & Scott, C.L. Unleashing the power of inhibitors of oncogenic kinases through BH3 mimetics. Nat. Rev. Cancer 9, 321–326 (2009).

    Article  CAS  Google Scholar 

  13. Vogler, M. et al. Concurrent up-regulation of BCL-XL and BCL2A1 induces approximately 1,000-fold resistance to ABT-737 in chronic lymphocytic leukemia. Blood 113, 4403–4413 (2009).

    Article  CAS  Google Scholar 

  14. Jonas, E.A. et al. Modulation of synaptic transmission by the BCL-2 family protein BCL-xL . J. Neurosci. 23, 8423–8431 (2003).

    Article  CAS  Google Scholar 

  15. Hickman, J.A., Hardwick, J.M., Kaczmarek, L.K. & Jonas, E.A. Bcl-xL inhibitor ABT-737 reveals a dual role for Bcl-xL in synaptic transmission. J. Neurophysiol. 99, 1515–1522 (2008).

    Article  CAS  Google Scholar 

  16. Li, Z. et al. Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell 141, 859–871 (2010).

    Article  CAS  Google Scholar 

  17. Clem, R.J. et al. Modulation of cell death by Bcl-xL through caspase interaction. Proc. Natl. Acad. Sci. USA 95, 554–559 (1998).

    Article  CAS  Google Scholar 

  18. Cheng, E.H. et al. Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278, 1966–1968 (1997).

    Article  CAS  Google Scholar 

  19. Li, H., Zhu, H., Xu, C.J. & Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491–501 (1998).

    Article  CAS  Google Scholar 

  20. Luo, X., Budihardjo, I., Zou, H., Slaughter, C. & Wang, X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481–490 (1998).

    Article  CAS  Google Scholar 

  21. Bonanni, L. et al. Zinc-dependent multi-conductance channel activity in mitochondria isolated from ischemic brain. J. Neurosci. 26, 6851–6862 (2006).

    Article  CAS  Google Scholar 

  22. Calderone, A. et al. Ischemic insults derepress the gene silencer REST in neurons destined to die. J. Neurosci. 23, 2112–2121 (2003).

    Article  CAS  Google Scholar 

  23. Krajewska, M. et al. Dynamics of expression of apoptosis-regulatory proteins Bid, Bcl-2, Bcl-X, Bax and Bak during development of murine nervous system. Cell Death Differ. 9, 145–157 (2002).

    Article  CAS  Google Scholar 

  24. Chen, J. et al. Induction of caspase-3–like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J. Neurosci. 18, 4914–4928 (1998).

    Article  CAS  Google Scholar 

  25. Jover, T. et al. Estrogen protects against global ischemia-induced neuronal death and prevents activation of apoptotic signaling cascades in the hippocampal CA1. J. Neurosci. 22, 2115–2124 (2002).

    Article  CAS  Google Scholar 

  26. Colbourne, F., Sutherland, G.R. & Auer, R.N. Electron microscopic evidence against apoptosis as the mechanism of neuronal death in global ischemia. J. Neurosci. 19, 4200–4210 (1999).

    Article  CAS  Google Scholar 

  27. Fujita, N., Nagahashi, A., Nagashima, K., Rokudai, S. & Tsuruo, T. Acceleration of apoptotic cell death after the cleavage of Bcl-xL protein by caspase-3-like proteases. Oncogene 17, 1295–1304 (1998).

    Article  CAS  Google Scholar 

  28. Dejean, L.M. et al. Oligomeric Bax is a component of the putative cytochrome c release channel MAC, mitochondrial apoptosis-induced channel. Mol. Biol. Cell 16, 2424–2432 (2005).

    Article  CAS  Google Scholar 

  29. Hetz, C. et al. Bax channel inhibitors prevent mitochondrion-mediated apoptosis and protect neurons in a model of global brain ischemia. J. Biol. Chem. 280, 42960–42970 (2005).

    Article  CAS  Google Scholar 

  30. van Delft, M.F. et al. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell [see comment] 10, 389–399 (2006).

    Article  CAS  Google Scholar 

  31. Kirsch, D.G. et al. Caspase-3-dependent cleavage of Bcl-2 promotes release of cytochrome c. J. Biol. Chem. 274, 21155–21161 (1999).

    Article  CAS  Google Scholar 

  32. Basañez, G. et al. Pro-apoptotic cleavage products of Bcl-xL form cytochrome c–conducting pores in pure lipid membranes. J. Biol. Chem. 276, 31083–31091 (2001).

    Article  Google Scholar 

  33. Graham, S.H. & Chen, J. Programmed cell death in cerebral ischemia. J. Cereb. Blood Flow Metab. 21, 99–109 (2001).

    Article  CAS  Google Scholar 

  34. Okuno, S., Saito, A., Hayashi, T. & Chan, P.H. The c-Jun N-terminal protein kinase signaling pathway mediates Bax activation and subsequent neuronal apoptosis through interaction with Bim after transient focal cerebral ischemia. J. Neurosci. 24, 7879–7887 (2004).

    Article  CAS  Google Scholar 

  35. Hochhauser, E. et al. Bax ablation protects against myocardial ischemia-reperfusion injury in transgenic mice. Am. J. Physiol. Heart Circ. Physiol. 284, H2351–H2359 (2003).

    Article  CAS  Google Scholar 

  36. Wang, X. et al. Developmental shift of cyclophilin D contribution to hypoxic-ischemic brain injury. J. Neurosci. 29, 2588–2596 (2009).

    Article  CAS  Google Scholar 

  37. Lewis, J. et al. Inhibition of virus-induced neuronal apoptosis by Bax. Nat. Med. 5, 832–835 (1999).

    Article  CAS  Google Scholar 

  38. Fannjiang, Y. et al. BAK alters neuronal excitability and can switch from anti- to pro-death function during postnatal development. Dev. Cell 4, 575–585 (2003).

    Article  CAS  Google Scholar 

  39. Nakagawa, T. & Yuan, J. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J. Cell Biol. 150, 887–894 (2000).

    Article  CAS  Google Scholar 

  40. Hara, H. et al. Attenuation of transient focal cerebral ischemic injury in transgenic mice expressing a mutant ICE inhibitory protein. J. Cereb. Blood Flow Metab. 17, 370–375 (1997).

    Article  CAS  Google Scholar 

  41. Cao, G. et al. Cloning and characterization of rat caspase-9: implications for a role in mediating caspase-3 activation and hippocampal cell death after transient cerebral ischemia. J. Cereb. Blood Flow Metab. 22, 534–546 (2002).

    Article  CAS  Google Scholar 

  42. Ofengeim, D., Miyawaki, T. & Zukin, R.S. Molecular and cellular mechanisms of ischemia-induced neuronal death. in Stroke: Pathophysiology, Diagnosis and Management (eds. Mohr, J.P., Choi, D.W., Grotta, J.C., Weir, B. & Wolf, P.A.) 1–39 (Churchill Livingstone Elsevier, Philadelphia, 2011).

  43. Northington, F.J., Chavez-Valdez, R. & Martin, L.J. Neuronal cell death in neonatal hypoxia-ischemia. Ann. Neurol. 69, 743–758 (2011).

    Article  CAS  Google Scholar 

  44. Alavian, K.N. et al. Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F(1)F(O) ATP synthase. Nat. Cell Biol. 13, 1224–1233 (2011).

    Article  CAS  Google Scholar 

  45. Chen, Y.B. et al. Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential. J. Cell Biol. 195, 263–276 (2011).

    Article  CAS  Google Scholar 

  46. Miyawaki, T. et al. The endogenous inhibitor of Akt, CTMP, is critical to ischemia-induced neuronal death. Nat. Neurosci. 12, 618–626 (2009).

    Article  CAS  Google Scholar 

  47. Brown, M.R., Sullivan, P.G. & Geddes, J.W. Synaptic mitochondria are more susceptible to Ca2+ overload than nonsynaptic mitochondria. J. Biol. Chem. 281, 11658–11668 (2006).

    Article  CAS  Google Scholar 

  48. Sims, N.R. & Anderson, M.F. Isolation of mitochondria from rat brain using Percoll density gradient centrifugation. Nat. Protoc. 3, 1228–1239 (2008).

    Article  CAS  Google Scholar 

  49. Wei, M.C. et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science [see comment] 292, 727–730 (2001).

    Article  CAS  Google Scholar 

  50. Formisano, L. et al. Ischemic insults promote epigenetic reprogramming of mu opioid receptor expression in hippocampal neurons. Proc. Natl. Acad. Sci. USA 104, 4170–4175 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Latuszek-Barrantes for excellent technical assistance, and J. Hickman, R. Kitsis and L.K. Kaczmarek for insightful scientific discussion and constructive review of the manuscript. We thank C. Kinnally and N. Danial for the gift of Bax−/−; Bak−/− MEFs and the Institut de Recherches Servier for ABT-737. This work was supported by grants from the US National Institutes of Health (NS045876 to E.A.J., NS46742 to R.S.Z. and NS37402 to J.M.H.), a McKnight Foundation Brain Disorders Award (to R.S.Z.) and a generous grant from the F.M. Kirby Foundation (to R.S.Z.). R.S.Z. is the F.M. Kirby Professor of Neural Repair and Protection.

Author information

Authors and Affiliations

Authors

Contributions

D.O. performed the experiments, wrote and prepared the manuscript, and made intellectual contributions to the study. Y.-b.C. created the knock-in mouse. T.M., H.L., S.S., R.J.F. and F.P. performed experiments. K.N.A. performed experiments and made intellectual contributions. B.A.R. assisted with knock-in mouse colony preparation. J.A.H. provided intellectual contributions. J.M.H. and R.S.Z. designed experiments, wrote the manuscript and provided intellectual contributions. E.A.J. designed experiments, performed experiments, wrote the manuscript and provided intellectual contributions.

Corresponding authors

Correspondence to J Marie Hardwick, R Suzanne Zukin or Elizabeth A Jonas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 (PDF 1129 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ofengeim, D., Chen, Yb., Miyawaki, T. et al. N-terminally cleaved Bcl-xL mediates ischemia-induced neuronal death. Nat Neurosci 15, 574–580 (2012). https://doi.org/10.1038/nn.3054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3054

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing