Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

A new approach to manipulate the fate of single neural stem cells in tissue

Abstract

A challenge in the field of neural stem cell biology is the mechanistic dissection of single stem cell behavior in tissue. Although such behavior can be tracked by sophisticated imaging techniques, current methods of genetic manipulation do not allow researchers to change the level of a defined gene product on a truly acute time scale and are limited to very few genes at a time. To overcome these limitations, we established microinjection of neuroepithelial/radial glial cells (apical progenitors) in organotypic slice culture of embryonic mouse brain. Microinjected apical progenitors showed cell cycle parameters that were indistinguishable to apical progenitors in utero, underwent self-renewing divisions and generated neurons. Microinjection of single genes, recombinant proteins or complex mixtures of RNA was found to elicit acute and defined changes in apical progenitor behavior and progeny fate. Thus, apical progenitor microinjection provides a new approach to acutely manipulating single neural stem and progenitor cells in tissue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microinjection of apical progenitors in brain slices.
Figure 2: Microinjection of a tracer into E13.5 hindbrain apical progenitors reveals their asymmetric division.
Figure 3: Microinjection of apical progenitors does not alter their cell cycle parameters.
Figure 4: Microinjection of apical progenitors with a plasmid encoding a transcription factor causes a change in gene expression.
Figure 5: Detection of a single translation product in apical progenitors microinjected with a poly-A+ mRNA pool.
Figure 6: Microinjection of poly-A+ mRNA from neural stem cells alters apical progenitor fate.
Figure 7: Microinjection of cdc42T17N into apical progenitors alters centrosome localization and induces apical progenitor delamination.

Similar content being viewed by others

References

  1. Osumi, N. & Inoue, T. Gene transfer into cultured mammalian embryos by electroporation. Methods 24, 35–42 (2001).

    Article  CAS  Google Scholar 

  2. Noctor, S.C., Flint, A.C., Weissman, T.A., Dammerman, R.S. & Kriegstein, A.R. Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720 (2001).

    Article  CAS  Google Scholar 

  3. Miyata, T., Kawaguchi, A., Okano, H. & Ogawa, M. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31, 727–741 (2001).

    Article  CAS  Google Scholar 

  4. Götz, M. & Huttner, W.B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6, 777–788 (2005).

    Article  Google Scholar 

  5. Kriegstein, A. & Alvarez-Buylla, A. The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci. 32, 149–184 (2009).

    Article  CAS  Google Scholar 

  6. Fietz, S.A. et al. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat. Neurosci. 13, 690–699 (2010).

    Article  CAS  Google Scholar 

  7. Hansen, D.V., Lui, J.H., Parker, P.R. & Kriegstein, A.R. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464, 554–561 (2010).

    Article  CAS  Google Scholar 

  8. Reillo, I., de Juan Romero, C., Garcia-Cabezas, M.A. & Borrell, V. A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb. Cortex 21, 1674–1694 (2011).

    Article  Google Scholar 

  9. Fietz, S.A. & Huttner, W.B. Cortical progenitor expansion, self-renewal and neurogenesis—a polarized perspective. Curr. Opin. Neurobiol. 21, 23–35 (2011).

    Article  CAS  Google Scholar 

  10. Lui, J.H., Hansen, D.V. & Kriegstein, A.R. Development and evolution of the human neocortex. Cell 146, 18–36 (2011).

    Article  CAS  Google Scholar 

  11. Farkas, L.M. et al. Insulinoma-associated 1 has a panneurogenic role and promotes the generation and expansion of basal progenitors in the developing mouse neocortex. Neuron 60, 40–55 (2008).

    Article  CAS  Google Scholar 

  12. Sessa, A., Mao, C.A., Hadjantonakis, A.K., Klein, W.H. & Broccoli, V. Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron 60, 56–69 (2008).

    Article  CAS  Google Scholar 

  13. Pepperkok, R., Saffrich, R. & Ansorge, W. Computer-automated capillary microinjection of macromolecules into living cells. in Cell Biology: a Laboratory Handbook (ed. Celis, J.E.) 22–30 (Academic Press, London, 1994).

  14. Taverna, E. & Huttner, W.B. Neural progenitor nuclei IN Motion. Neuron 67, 906–914 (2010).

    Article  CAS  Google Scholar 

  15. Farkas, L.M. & Huttner, W.B. The cell biology of neural stem and progenitor cells and its significance for their proliferation versus differentiation during mammalian brain development. Curr. Opin. Cell Biol. 20, 707–715 (2008).

    Article  CAS  Google Scholar 

  16. Takahashi, T., Nowakowski, R.S. & Caviness, V.S. Jr. The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J. Neurosci. 15, 6046–6057 (1995).

    Article  CAS  Google Scholar 

  17. Panhuysen, M. et al. Effects of Wnt1 signaling on proliferation in the developing mid-/hindbrain region. Mol. Cell. Neurosci. 26, 101–111 (2004).

    Article  CAS  Google Scholar 

  18. Arai, Y. et al. Neural stem and progenitor cells shorten S-phase on commitment to neuron production. Nat. Commun. 2, 154 (2011).

    Article  Google Scholar 

  19. Haubensak, W., Attardo, A., Denk, W. & Huttner, W.B. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc. Natl. Acad. Sci. USA 101, 3196–3201 (2004).

    Article  CAS  Google Scholar 

  20. Kosodo, Y. et al. Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J. 23, 2314–2324 (2004).

    Article  CAS  Google Scholar 

  21. Ludtke, J.J., Sebestyén, M.G. & Wolff, J.A. The effect of cell division on the cellular dynamics of microinjected DNA and dextran. Mol. Ther. 5, 579–588 (2002).

    Article  CAS  Google Scholar 

  22. Ochiai, W. et al. Periventricular notch activation and asymmetric Ngn2 and Tbr2 expression in pair-generated neocortical daughter cells. Mol. Cell Neurosci. 40, 225–233 (2009).

    Article  CAS  Google Scholar 

  23. Englund, C. et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J. Neurosci. 25, 247–251 (2005).

    Article  CAS  Google Scholar 

  24. Kowalczyk, T. et al. Intermediate neuronal progenitors (basal progenitors) produce pyramidal-projection neurons for all layers of cerebral cortex. Cereb. Cortex 19, 2439–2450 (2009).

    Article  Google Scholar 

  25. Kwon, G.S. & Hadjantonakis, A.K. Eomes: GFP—a tool for live imaging cells of the trophoblast, primitive streak and telencephalon in the mouse embryo. Genesis 45, 208–217 (2007).

    Article  CAS  Google Scholar 

  26. Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003).

    Article  CAS  Google Scholar 

  27. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 407, 313–319 (1997).

    Article  CAS  Google Scholar 

  28. Conti, L. et al. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol. 3, e283 (2005).

    Article  Google Scholar 

  29. Pollard, S.M., Benchoua, A. & Lowell, S. Neural stem cells, neurons and glia. Methods Enzymol. 418, 151–169 (2006).

    Article  CAS  Google Scholar 

  30. Alfei, L. et al. Hyaluronate receptor CD44 is expressed by astrocytes in the adult chicken and in astrocyte cell precursors in early development of the chick spinal cord. Eur. J. Histochem. 43, 29–38 (1999).

    CAS  PubMed  Google Scholar 

  31. Liu, Y. et al. CD44 expression identifies astrocyte-restricted precursor cells. Dev. Biol. 276, 31–46 (2004).

    Article  CAS  Google Scholar 

  32. Cappello, S. et al. The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface. Nat. Neurosci. 9, 1099–1107 (2006).

    Article  CAS  Google Scholar 

  33. Narumiya, S. & Yasuda, S. Rho GTPases in animal cell mitosis. Curr. Opin. Cell Biol. 18, 199–205 (2006).

    Article  CAS  Google Scholar 

  34. Lyons, D.A., Guy, A.T. & Clarke, J.D. Monitoring neural progenitor fate through multiple rounds of division in an intact vertebrate brain. Development 130, 3427–3436 (2003).

    Article  CAS  Google Scholar 

  35. Alexandre, P., Reugels, A.M., Barker, D., Blanc, E. & Clarke, J.D. Neurons derive from the more apical daughter in asymmetric divisions in the zebrafish neural tube. Nat. Neurosci. 13, 673–679 (2010).

    Article  CAS  Google Scholar 

  36. Wilsch-Bräuninger, M., Peters, J., Paridaen, J.T.M.L. & Huttner, W.B. Basolateral rather than apical primary cilia on neuroepithelial cells committed to delamination. Development 139, 95–105 (2012).

    Article  Google Scholar 

  37. Pepperkok, R. et al. Automatic microinjection system facilitates detection of growth inhibitory mRNA. Proc. Natl. Acad. Sci. USA 85, 6748–6752 (1988).

    Article  CAS  Google Scholar 

  38. Rosa, P. et al. An antibody against secretogranin I (chromogranin B) is packaged into secretory granules. J. Cell Biol. 109, 17–34 (1989).

    Article  CAS  Google Scholar 

  39. Sul, J.Y. et al. Transcriptome transfer produces a predictable cellular phenotype. Proc. Natl. Acad. Sci. USA 106, 7624–7629 (2009).

    Article  CAS  Google Scholar 

  40. Kitamura, K., Judkewitz, B., Kano, M., Denk, W. & Hausser, M. Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nat. Methods 5, 61–67 (2008).

    Article  CAS  Google Scholar 

  41. Rancz, E.A. et al. Transfection via whole-cell recording in vivo: bridging single-cell physiology, genetics and connectomics. Nat. Neurosci. 14, 527–532 (2011).

    Article  CAS  Google Scholar 

  42. Kawaguchi, A. et al. Single-cell gene profiling defines differential progenitor subclasses in mammalian neurogenesis. Development 135, 3113–3124 (2008).

    Article  CAS  Google Scholar 

  43. Pinto, L. et al. Prospective isolation of functionally distinct radial glial subtypes: lineage and transcriptome analysis. Mol. Cell Neurosci. 38, 15–42 (2008).

    Article  CAS  Google Scholar 

  44. Beckervordersandforth, R. et al. In vivo fate mapping and expression analysis reveals molecular hallmarks of prospectively isolated adult neural stem cells. Cell Stem Cell 7, 744–758 (2010).

    Article  CAS  Google Scholar 

  45. Saito, K. et al. Morphological asymmetry in dividing retinal progenitor cells. Dev. Growth Differ. 45, 219–229 (2003).

    Article  Google Scholar 

  46. Kragl, M. et al. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460, 60–65 (2009).

    Article  CAS  Google Scholar 

  47. Attardo, A., Calegari, F., Haubensak, W., Wilsch-Bräuninger, M. & Huttner, W.B. Live imaging at the onset of cortical neurogenesis reveals differential appearance of the neuronal phenotype in apical versus basal progenitor progeny. PLoS ONE 3, e2388 (2008).

    Article  Google Scholar 

  48. Pulvers, J.N. & Huttner, W.B. Brca1 is required for embryonic development of the mouse cerebral cortex to normal size by preventing apoptosis of early neural progenitors. Development 136, 1859–1868 (2009).

    Article  CAS  Google Scholar 

  49. Calegari, F., Haubensak, W., Haffner, C. & Huttner, W.B. Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development. J. Neurosci. 25, 6533–6538 (2005).

    Article  CAS  Google Scholar 

  50. Ansorge, W. & Pepperkok, R. Performance of an automated system for capillary microinjection into living cells. J. Biochem. Biophys. Methods 16, 283–292 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to R.F. Hevner for kindly providing the Tbr2-GFP mouse line, T. Miyata for pCS2-Ngn2, E. Tanaka for pCAGGS-Cherry and C. Eckmann for pTNT and helpful discussion. We thank J. Helppi and other members of the animal facility, as well as H. Wolf of the workshop, of the Max Planck Institute of Molecular Cell Biology and Genetics for excellent support, A. Ettinger for advice with NS-5 cells, K. Saito for advice with retina slice culture, J.F. Fei and Y.J. Chang for experimental advice, Y. Arai and J. Pulvers for discussion, and A.-M. Marzesco, F. Mora-Bermudéz, E. Paluch and F.K. Wong for helpful comments on the manuscript. W.B.H. was supported by grants from the Deutsche Forschungsgemeinschaft (DFG) (SFB 655, A2; TRR 83, Tp6) and the European Research Council (250197), by the DFG-funded Center for Regenerative Therapies Dresden, and by the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Contributions

E.T. designed and performed all of the microinjections and most of the other experimental work, analyzed the data and wrote the manuscript. C.H. performed experiments. R.P. taught the microinjection technique to E.T. W.B.H. supervised the project, analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Wieland B Huttner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 3775 kb)

Supplementary Video 1

The microinjection procedure. (AVI 5426 kb)

Supplementary Video 2

Microinjected hindbrain APs maintain contact with the ventricular surface and the basal lamina. (AVI 2397 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taverna, E., Haffner, C., Pepperkok, R. et al. A new approach to manipulate the fate of single neural stem cells in tissue. Nat Neurosci 15, 329–337 (2012). https://doi.org/10.1038/nn.3008

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3008

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing