Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Twisted tango: brain tumor neurovascular interactions

Abstract

The brain is a complicated organ with complexity derived from cellular and microenvironmental interactions. Similarly, brain tumor cells actively modify and are regulated by their microenvironment. Brain tumors are highly heterogeneous and frequently show a cellular hierarchy with self-renewing tumorigenic brain tumor stem cells (BTSCs) at the apex. Although BTSCs are distinct from neural stem cells, they share characteristics, including bidirectional interplay with supportive vasculature critical for maintenance of undifferentiated states and survival. BTSCs stimulate angiogenesis through growth factor secretion and are enriched in perivascular niches. Microenvironmental conditions, including hypoxia, drive expression of stem cell genes and proangiogenic factors, further linking cellular hierarchy regulation and instructive stromal elements. BTSCs may also directly contribute to tumor vasculature through plasticity toward an endothelial lineage. Interrogating the codependence of BTSCs and the perivascular niche may directly inform clinical approaches for brain tumor therapy through targeting of highly angiogenic and tumorigenic cellular subsets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Learning the steps: isolation and characterization of BTSCs.
Figure 2: Shall we dance? Coordinated communication between cells in the perivascular niche.

Similar content being viewed by others

References

  1. Stupp, R. et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 10, 459–466 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Phillips, H.S. et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9, 157–173 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Gibson, P. et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 468, 1095–1099 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Johnson, R.A. et al. Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature 466, 632–636 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Verhaak, R.G. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hemmati, H.D. et al. Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl. Acad. Sci. USA 100, 15178–15183 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Galli, R. et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 64, 7011–7021 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Singh, S.K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Taylor, M.D. et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8, 323–335 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Bao, S. et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 66, 7843–7848 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Gilbertson, R.J. & Rich, J.N. Making a tumour's bed: glioblastoma stem cells and the vascular niche. Nat. Rev. Cancer 7, 733–736 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Calabrese, C. et al. A perivascular niche for brain tumor stem cells. Cancer Cell 11, 69–82 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Li, Z. et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15, 501–513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heddleston, J.M., Li, Z., McLendon, R.E., Hjelmeland, A.B. & Rich, J.N. The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8, 3274–3284 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Folkins, C. et al. Glioma tumor stem-like cells promote tumor angiogenesis and vasculogenesis via vascular endothelial growth factor and stromal-derived factor 1. Cancer Res. 69, 7243–7251 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Salmaggi, A. et al. Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia 54, 850–860 (2006).

    Article  PubMed  Google Scholar 

  18. Liu, G. et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol. Cancer 5, 67 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Cheng, L. et al. Elevated invasive potential of glioblastoma stem cells. Biochem. Biophys. Res. Commun. 406, 643–648 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu, A. et al. Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro-oncol. 12, 1113–1125 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ogden, A.T. et al. Identification of A2B5+CD133- tumor-initiating cells in adult human gliomas. Neurosurgery 62, 505–515 (2008).

    Article  PubMed  Google Scholar 

  22. Tchoghandjian, A. et al. A2B5 cells from human glioblastoma have cancer stem cell properties. Brain Pathol. 20, 211–221 (2010).

    Article  PubMed  Google Scholar 

  23. Bao, S. et al. Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res. 68, 6043–6048 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Read, T.A. et al. Identification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma. Cancer Cell 15, 135–147 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Son, M.J., Woolard, K., Nam, D.H., Lee, J. & Fine, H.A. SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell 4, 440–452 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ward, R.J. et al. Multipotent CD15+ cancer stem cells in patched-1-deficient mouse medulloblastoma. Cancer Res. 69, 4682–4690 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Lathia, J.D. et al. Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell 6, 421–432 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Anido, J. et al. TGF-β receptor inhibitors target the CD44high/Id1high glioma-initiating cell population in human glioblastoma. Cancer Cell 18, 655–668 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Mazzoleni, S. et al. Epidermal growth factor receptor expression identifies functionally and molecularly distinct tumor-initiating cells in human glioblastoma multiforme and is required for gliomagenesis. Cancer Res. 70, 7500–7513 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Singec, I. et al. Defining the actual sensitivity and specificity of the neurosphere assay in stem cell biology. Nat. Methods 3, 801–806 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Pastrana, E., Silva-Vargas, V. & Doetsch, F. Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 8, 486–498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Laks, D.R. et al. Neurosphere formation is an independent predictor of clinical outcome in malignant glioma. Stem Cells 27, 980–987 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Deleyrolle, L.P. et al. Evidence for label-retaining tumour-initiating cells in human glioblastoma. Brain 134, 1331–1343 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ming, G.L. & Song, H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70, 687–702 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eyler, C.E. et al. Glioma stem cell proliferation and tumor growth are promoted by nitric oxide synthase-2. Cell 146, 53–66 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Charles, N. et al. Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell 6, 141–152 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Hovinga, K.E. et al. Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells 28, 1019–1029 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lathia, J.D., Rao, M.S., Mattson, M.P. & Ffrench-Constant, C. The microenvironment of the embryonic neural stem cell: lessons from adult niches? Dev. Dyn. 236, 3267–3282 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Ljubimova, J.Y. et al. Association between laminin-8 and glial tumor grade, recurrence, and patient survival. Cancer 101, 604–612 (2004).

    Article  PubMed  Google Scholar 

  40. Kawataki, T. et al. Laminin isoforms and their integrin receptors in glioma cell migration and invasiveness: evidence for a role of alpha5-laminin(s) and alpha3beta1 integrin. Exp. Cell Res. 313, 3819–3831 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Pollard, S.M. et al. Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4, 568–580 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Zheng, P.P., Hop, W.C., Luider, T.M., Sillevis Smitt, P.A. & Kros, J.M. Increased levels of circulating endothelial progenitor cells and circulating endothelial nitric oxide synthase in patients with gliomas. Ann. Neurol. 62, 40–48 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Butler, J.M. et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6, 251–264 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shih, A.H. & Holland, E.C. Notch signaling enhances nestin expression in gliomas. Neoplasia 8, 1072–1082 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, X.P. et al. Notch activation promotes cell proliferation and the formation of neural stem cell-like colonies in human glioma cells. Mol. Cell. Biochem. 307, 101–108 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Fan, X. et al. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res. 66, 7445–7452 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Fan, X. et al. NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28, 5–16 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, J. et al. Notch promotes radioresistance of glioma stem cells. Stem Cells 28, 17–28 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ulasov, I.V., Nandi, S., Dey, M., Sonabend, A.M. & Lesniak, M.S. Inhibition of Sonic hedgehog and Notch pathways enhances sensitivity of CD133+ glioma stem cells to temozolomide therapy. Mol. Med. 17, 103–112 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Becher, O.J. et al. Gli activity correlates with tumor grade in platelet-derived growth factor-induced gliomas. Cancer Res. 68, 2241–2249 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Bar, E.E. et al. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 25, 2524–2533 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Clement, V., Sanchez, P., de Tribolet, N., Radovanovic, I. & Ruiz i Altaba, A. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr. Biol. 17, 165–172 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Takezaki, T. et al. Essential role of the Hedgehog signaling pathway in human glioma-initiating cells. Cancer Sci. 102, 1306–1312 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Michael, L.E. et al. Bmi1 is required for Hedgehog pathway-driven medulloblastoma expansion. Neoplasia 10, 1343–1349 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang, X. et al. Sonic hedgehog regulates Bmi1 in human medulloblastoma brain tumor-initiating cells. Oncogene published online, doi:10.1038/onc.2011.232 (20 June 2011).

    Article  CAS  PubMed  Google Scholar 

  56. Hsieh, A., Ellsworth, R. & Hsieh, D. Hedgehog/GLI1 regulates IGF dependent malignant behaviors in glioma stem cells. J. Cell. Physiol. 226, 1118–1127 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Xu, Q., Yuan, X., Liu, G., Black, K.L. & Yu, J.S. Hedgehog signaling regulates brain tumor-initiating cell proliferation and portends shorter survival for patients with PTEN-coexpressing glioblastomas. Stem Cells 26, 3018–3026 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Hambardzumyan, D. et al. PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev. 22, 436–448 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Galan-Moya, E.M. et al. Secreted factors from brain endothelial cells maintain glioblastoma stem-like cell expansion through the mTOR pathway. EMBO Rep. 12, 470–476 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Soeda, A. et al. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene 28, 3949–3959 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Seidel, S. et al. A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2α. Brain 133, 983–995 (2010).

    Article  PubMed  Google Scholar 

  62. Bar, E.E., Lin, A., Mahairaki, V., Matsui, W. & Eberhart, C.G. Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. Am. J. Pathol. 177, 1491–1502 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sakariassen, P.Ø. et al. Angiogenesis-independent tumor growth mediated by stem-like cancer cells. Proc. Natl. Acad. Sci. USA 103, 16466–16471 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chiao, M.T., Yang, Y.C., Cheng, W.Y., Shen, C.C. & Ko, J.L. CD133+ glioblastoma stem-like cells induce vascular mimicry in vivo. Curr. Neurovasc. Res. 8, 210–219 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Norden, A.D., Drappatz, J. & Wen, P.Y. Antiangiogenic therapies for high-grade glioma. Nat. Rev. Neurol. 5, 610–620 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Knizetova, P. et al. Autocrine regulation of glioblastoma cell cycle progression, viability and radioresistance through the VEGF-VEGFR2 (KDR) interplay. Cell Cycle 7, 2553–2561 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Maderna, E., Salmaggi, A., Calatozzolo, C., Limido, L. & Pollo, B. Nestin, PDGFR beta, CXCL12 and VEGF in glioma patients: different profiles of (pro-angiogenic) molecule expression are related with tumor grade and may provide prognostic information. Cancer Biol. Ther. 6, 1018–1024 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Yang, S.X. et al. Activation of chemokine receptor CXCR4 in malignant glioma cells promotes the production of vascular endothelial growth factor. Biochem. Biophys. Res. Commun. 335, 523–528 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Hattermann, K. et al. The chemokine receptor CXCR7 is highly expressed in human glioma cells and mediates antiapoptotic effects. Cancer Res. 70, 3299–3308 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Ping, Y.F. et al. The chemokine CXCL12 and its receptor CXCR4 promote glioma stem cell-mediated VEGF production and tumour angiogenesis via PI3K/AKT signalling. J. Pathol. 224, 344–354 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Kioi, M. et al. Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J. Clin. Invest. 120, 694–705 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Komatani, H., Sugita, Y., Arakawa, F., Ohshima, K. & Shigemori, M. Expression of CXCL12 on pseudopalisading cells and proliferating microvessels in glioblastomas: an accelerated growth factor in glioblastomas. Int. J. Oncol. 34, 665–672 (2009).

    CAS  PubMed  Google Scholar 

  73. Qiu, B. et al. IL-10 and TGF-β2 are overexpressed in tumor spheres cultured from human gliomas. Mol. Biol. Rep. 38, 3585–3591 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Ikushima, H. et al. Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell 5, 504–514 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Pen, A., Moreno, M.J., Durocher, Y., Deb-Rinker, P. & Stanimirovic, D.B. Glioblastoma-secreted factors induce IGFBP7 and angiogenesis by modulating Smad-2-dependent TGF-beta signaling. Oncogene 27, 6834–6844 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Peñuelas, S. et al. TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell 15, 315–327 (2009).

    Article  PubMed  CAS  Google Scholar 

  77. Mokrý, J. et al. Nestin expression by newly formed human blood vessels. Stem Cells Dev. 13, 658–664 (2004).

    Article  PubMed  Google Scholar 

  78. Ricci-Vitiani, L. et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468, 824–828 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Wang, R. et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468, 829–833 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Soda, Y. et al. Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc. Natl. Acad. Sci. USA 108, 4274–4280 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wurmser, A.E. et al. Cell fusion-independent differentiation of neural stem cells to the endothelial lineage. Nature 430, 350–356 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Zhao, Y. et al. Endothelial cell transdifferentiation of human glioma stem progenitor cells in vitro. Brain Res. Bull. 82, 308–312 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Wong, E.T. et al. Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. J. Clin. Oncol. 17, 2572–2578 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Lamborn, K.R. et al. Progression-free survival: an important end point in evaluating therapy for recurrent high-grade gliomas. Neuro-oncol. 10, 162–170 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Rubenstein, J.L. et al. Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia 2, 306–314 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kreisl, T.N. et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J. Clin. Oncol. 27, 740–745 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Friedman, H.S. et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J. Clin. Oncol. 27, 4733–4740 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Vredenburgh, J.J. et al. The addition of bevacizumab to standard radiation therapy and temozolomide followed by bevacizumab, temozolomide, and irinotecan for newly diagnosed glioblastoma. Clin. Cancer Res. 17, 4119–4124 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wefel, J.S. et al. Neurocognitive function in patients with recurrent glioblastoma treated with bevacizumab. Neuro-oncol. 13, 660–668 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Folkins, C. et al. Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res. 67, 3560–3564 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Lai, A. et al. Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme. J. Clin. Oncol. 29, 142–148 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. de Groot, J.F. et al. Phase II study of aflibercept in recurrent malignant glioma: a North American Brain Tumor Consortium study. J. Clin. Oncol. 29, 2689–2695 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Batchelor, T.T. et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11, 83–95 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Batchelor, T.T. et al. Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J. Clin. Oncol. 28, 2817–2823 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Reardon, D.A. et al. Randomized phase II study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme. J. Clin. Oncol. 26, 5610–5617 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Stupp, R. et al. Phase I/IIa study of cilengitide and temozolomide with concomitant radiotherapy followed by cilengitide and temozolomide maintenance therapy in patients with newly diagnosed glioblastoma. J. Clin. Oncol. 28, 2712–2718 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Pàez-Ribes, M. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15, 220–231 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Keunen, O. et al. Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc. Natl. Acad. Sci. USA 108, 3749–3754 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the sources of our funding, including the US National Institutes of Health (CA151522 for A.B.H.; CA142159 for J.D.L.; CA129958, CA116659 and CA154130 for J.N.R.), the American Brain Tumor Association (J.D.L.) and the James S. McDonnell Foundation (J.N.R.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anita B Hjelmeland or Jeremy N Rich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hjelmeland, A., Lathia, J., Sathornsumetee, S. et al. Twisted tango: brain tumor neurovascular interactions. Nat Neurosci 14, 1375–1381 (2011). https://doi.org/10.1038/nn.2955

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2955

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer