Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engrailed protects mouse midbrain dopaminergic neurons against mitochondrial complex I insults

Abstract

Mice heterozygous for the homeobox gene Engrailed-1 (En1) display progressive loss of mesencephalic dopaminergic (mDA) neurons. We report that exogenous Engrailed-1 and Engrailed-2 (collectively Engrailed) protect mDA neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a mitochondrial complex I toxin used to model Parkinson's disease in animals. Engrailed enhances the translation of nuclearly encoded mRNAs for two key complex I subunits, Ndufs1 and Ndufs3, and increases complex I activity. Accordingly, in vivo protection against MPTP by Engrailed is antagonized by Ndufs1 small interfering RNA. An association between Engrailed and complex I is further confirmed by the reduced expression of Ndufs1 and Ndufs3 in the substantia nigra pars compacta of En1 heterozygous mice. Engrailed also confers in vivo protection against 6-hydroxydopamine and α-synuclein-A30P. Finally, the unilateral infusion of Engrailed into the midbrain increases striatal dopamine content, resulting in contralateral amphetamine-induced turning. Therefore, Engrailed is both a survival factor for adult mDA neurons and a regulator of their physiological activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Engrailed protects against complex I, but not against complex II, inhibition.
Figure 2: Engrailed increases the translation of specific complex I subunits and complex I activity.
Figure 3: Engrailed enhances Ndufs1 and Ndufs3 levels in primary midbrain neuron cultures.
Figure 4: Ndufs1 and Ndufs3 expression is diminished in En1+/−En2+/+ mice.
Figure 5: Engrailed protection against MPTP is Ndufs1 dependent.
Figure 6: Engrailed-driven increases in striatal dopamine and turning behavior after MPTP are Ndufs1 dependent.
Figure 7: Engrailed protects against 6-OHDA and α-synuclein-A30P toxicity.

Similar content being viewed by others

References

  1. Dauer, W. & Przedborski, S. Parkinson's disease: mechanisms and models. Neuron 39, 889–909 (2003).

    Article  CAS  Google Scholar 

  2. Dawson, T.M. & Dawson, V.L. Molecular pathways of neurodegeneration in Parkinson's disease. Science 302, 819–822 (2003).

    Article  CAS  Google Scholar 

  3. Schapira, A.H. Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Lancet Neurol. 7, 97–109 (2008).

    Article  CAS  Google Scholar 

  4. Ang, S.L. Transcriptional control of midbrain dopaminergic neuron development. Development 133, 3499–3506 (2006).

    Article  CAS  Google Scholar 

  5. Albéri, L., Sgadò, P. & Simon, H. Engrailed genes are cell-autonomously required to prevent apoptosis in mesencephalic dopaminergic neurons. Development 131, 3229–3236 (2004).

    Article  Google Scholar 

  6. Hanks, M., Wurst, W., Anson-Cartwright, L., Auerbach, A.B. & Joyner, A.L. Rescue of the En-1 mutant phenotype by replacement of En-1 with En-2. Science 269, 679–682 (1995).

    Article  CAS  Google Scholar 

  7. Sonnier, L. et al. Progressive loss of dopaminergic neurons in the ventral midbrain of adult mice heterozygote for Engrailed1. J. Neurosci. 27, 1063–1071 (2007).

    Article  CAS  Google Scholar 

  8. Prochiantz, A. & Joliot, A. Can transcription factors function as cell-cell signalling molecules? Nat. Rev. Mol. Cell Biol. 4, 814–819 (2003).

    Article  CAS  Google Scholar 

  9. Brunet, I. et al. The transcription factor Engrailed-2 guides retinal axons. Nature 438, 94–98 (2005).

    Article  CAS  Google Scholar 

  10. Wizenmann, A. et al. Extracellular Engrailed participates in the topographic guidance of retinal axons in vivo. Neuron 64, 355–366 (2009).

    Article  CAS  Google Scholar 

  11. Richter, J.D. & Klann, E. Making synaptic plasticity and memory last: mechanisms of translational regulation. Genes Dev. 23, 1–11 (2009).

    Article  CAS  Google Scholar 

  12. Nédélec, S. et al. Emx2 homeodomain transcription factor interacts with eukaryotic translation initiation factor 4E (eIF4E) in the axons of olfactory sensory neurons. Proc. Natl. Acad. Sci. USA 101, 10815–10820 (2004).

    Article  Google Scholar 

  13. Topisirovic, I. & Borden, K.L.B. Homeodomain proteins and eukaryotic translation initiation factor 4E (eIF4E): an unexpected relationship. Histol. Histopathol. 20, 1275–1284 (2005).

    CAS  PubMed  Google Scholar 

  14. Di Nardo, A.A. et al. Dendritic localization and activity-dependent translation of Engrailed1 transcription factor. Mol. Cell. Neurosci. 35, 230–236 (2007).

    Article  CAS  Google Scholar 

  15. Alvarez-Fischer, D. et al. Characterization of the striatal 6-OHDA model of Parkinson's disease in wild type and alpha-synuclein-deleted mice. Exp. Neurol. 210, 182–193 (2008).

    Article  CAS  Google Scholar 

  16. Recchia, A. et al. Generation of a alpha-synuclein-based rat model of Parkinson's disease. Neurobiol. Dis. 30, 8–18 (2008).

    Article  CAS  Google Scholar 

  17. Höglinger, G.U. et al. Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. J. Neurochem. 84, 491–502 (2003).

    Article  Google Scholar 

  18. Marc, P. et al. Genome-wide analysis of mRNAs targeted to yeast mitochondria. EMBO Rep. 3, 159–164 (2002).

    Article  CAS  Google Scholar 

  19. Ricci, J.E. et al. Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell 117, 773–786 (2004).

    Article  CAS  Google Scholar 

  20. Dieteren, C.E. et al. Subunits of mitochondrial complex I exist as part of matrix- and membrane-associated subcomplexes in living cells. J. Biol. Chem. 283, 34753–34761 (2008).

    Article  CAS  Google Scholar 

  21. De Toni, A. et al. Regulation of survival in adult hippocampal and glioblastoma stem cell lineages by the homeodomain-only protein HOP. Neural Dev. 3, 13 (2008).

    Article  Google Scholar 

  22. Joliot, A. & Prochiantz, A. Transduction peptides: from technology to physiology. Nat. Cell Biol. 6, 189–196 (2004).

    Article  CAS  Google Scholar 

  23. Fuchs, J. et al. The transcription factor PITX3 is associated with sporadic Parkinson's disease. Neurobiol. Aging 30, 731–738 (2009).

    Article  CAS  Google Scholar 

  24. Haubenberger, D. et al. Association of transcription factor polymorphisms PITX3 and EN1 with Parkinson's disease. Neurobiol. Aging 32, 302–307 (2011).

    Article  CAS  Google Scholar 

  25. Flanagan, J.G. Neural map specification by gradients. Curr. Opin. Neurobiol. 16, 59–66 (2006).

    Article  CAS  Google Scholar 

  26. Boldogh, I.R. & Pon, L.A. Mitochondria on the move. Trends Cell Biol. 17, 502–510 (2007).

    Article  CAS  Google Scholar 

  27. Abou-Sleiman, P.M., Muqit, M.M. & Wood, N.W. Expanding insights of mitochondrial dysfunction in Parkinson's disease. Nat. Rev. Neurosci. 7, 207–219 (2006).

    Article  CAS  Google Scholar 

  28. Iaccarino, C. et al. Apoptotic mechanisms in mutant LRRK2-mediated cell death. Hum. Mol. Genet. 16, 1319–1326 (2007).

    Article  CAS  Google Scholar 

  29. Bénit, P. et al. Mutant NDUFS3 subunit of mitochondrial complex I causes Leigh syndrome. J. Med. Genet. 41, 14–17 (2004).

    Article  Google Scholar 

  30. Iuso, A. et al. Dysfunctions of cellular oxidative metabolism in patients with mutations in the NDUFS1 and NDUFS4 genes of complex I. J. Biol. Chem. 281, 10374–10380 (2006).

    Article  CAS  Google Scholar 

  31. Ekstrand, M.I. et al. Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc. Natl. Acad. Sci. USA 104, 1325–1330 (2007).

    Article  CAS  Google Scholar 

  32. De Vos, K.J., Grierson, A.J., Ackerley, S. & Miller, C.C. Role of axonal transport in neurodegenerative diseases. Annu. Rev. Neurosci. 31, 151–173 (2008).

    Article  CAS  Google Scholar 

  33. Brundin, P., Li, J.Y., Holton, J.L., Lindvall, O. & Revesz, T. Research in motion: the enigma of Parkinson's disease pathology spread. Nat. Rev. Neurosci. 9, 741–745 (2008).

    Article  CAS  Google Scholar 

  34. Kadkhodaei, B. et al. Nurr1 is required for maintenance of maturing and adult midbrain dopamine neurons. J. Neurosci. 29, 15923–15932 (2009).

    Article  CAS  Google Scholar 

  35. Chung, C.Y. et al. The transcription factor orthodenticle homeobox 2 influences axonal projections and vulnerability of midbrain dopaminergic neurons. Brain 133, 2022–2031 (2010).

    Article  Google Scholar 

  36. Di Salvio, M. et al. Otx2 controls neuron subtype identity in ventral tegmental area and antagonizes vulnerability to MPTP. Nat. Neurosci. 13, 1481–1488 (2010).

    Article  CAS  Google Scholar 

  37. Torero Ibad, R. et al. Otx2 promotes the survival of damaged adult retinal ganglion cells and protects against excitotoxic loss of visual acuity in vivo. J. Neurosci. 31, 5495–5503 (2011).

    Article  Google Scholar 

  38. Joshi, R.L. et al. Cell non-autonomous functions of homeoproteins in neuroprotection in the brain. FEBS Lett. 585, 1573–1578 (2011).

    Article  CAS  Google Scholar 

  39. Topisirovic, I. et al. Eukaryotic translation initiation factor 4E activity is modulated by HOXA9 at multiple levels. Mol. Cell. Biol. 25, 1100–1112 (2005).

    Article  CAS  Google Scholar 

  40. Wegrzyn, J. et al. Function of mitochondrial Stat3 in cellular respiration. Science 323, 793–797 (2009).

    Article  CAS  Google Scholar 

  41. She, H. et al. Direct regulation of complex I by mitochondrial MEF2D is disrupted in a mouse model of Parkinson disease and in human patients. J. Clin. Invest. 121, 930–940 (2011).

    Article  CAS  Google Scholar 

  42. Tatton, N.A. & Kish, S.J. In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining. Neuroscience 77, 1037–1048 (1997).

    Article  CAS  Google Scholar 

  43. Franklin, K.B.J. & Paxinos, G. The Mouse Brain in Stereotaxic Coordinates (Academic Press, 1997).

  44. Salthun-Lassalle, B., Hirsch, E.C., Wolfart, J., Ruberg, M. & Michel, P.P. Rescue of mesencephalic dopaminergic neurons in culture by low-level stimulation of voltage-gated sodium channels. J. Neurosci. 24, 5922–5930 (2004).

    Article  CAS  Google Scholar 

  45. Kawamoto, J.C. & Barrett, J.N. Cryopreservation of primary neurons for tissue culture. Brain Res. 384, 84–93 (1986).

    Article  CAS  Google Scholar 

  46. Douhou, A., Troadec, J.D., Ruberg, M., Raisman-Vozari, R. & Michel, P.P. Survival promotion of mesencephalic dopaminergic neurons by depolarizing concentrations of K+ requires concurrent inactivation of NMDA or AMPA/kainite receptors. J. Neurochem. 78, 163–174 (2001).

    Article  CAS  Google Scholar 

  47. Hirsch, E., Graybiel, A.M. & Agid, Y.A. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature 334, 345–348 (1988).

    Article  CAS  Google Scholar 

  48. Hollingsworth, E.B. et al. Biochemical characterization of a filtered synaptoneurosome preparation from guinea pig cerebral cortex: cyclic adenosine 3′:5′-monophosphate-generating systems, receptors, and enzymes. J. Neurosci. 5, 2240–2253 (1985).

    Article  CAS  Google Scholar 

  49. Villasana, L.E., Klann, E. & Tejada-Simon, M.V. Rapid isolation of synaptoneurosomes and postsynaptic densities from adult mouse hippocampus. J. Neurosci. Methods 158, 30–36 (2006).

    Article  CAS  Google Scholar 

  50. Iancu, R., Mohapel, P., Brundin, P. & Paul, G. Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson's disease in mice. Behav. Brain Res. 162, 1–10 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Agence Nationale pour la Recherche (ANR-06-013-01), the Michael. J. Fox Foundation (MJFF), Fondation de France (Physiopathology of Parkinson disease) and the European Community (FP7 222999, mdDANeurodev project). D.A.-F. was funded by the MJFF, the University Medical Center Giessen and Marburg (UKGM) and the German Academic Exchange Service (DAAD). The CIRB group is part of a Global Research Laboratory (KAIST, South Korea) and a Foundation for Medical Research (FRM) team. J.F. was funded by the German Research Foundation (DFG), the MJFF, FRM and NERF (Neuropôle de Recherche Francilien). A.H. was temporarily supported by INSERM. We thank E. Ipendey for technical help. Confocal imaging and quantification were performed by V. Mignon and B. Saubaméa. We thank the Laboratory of Mass Spectrometry and Proteomics, Institut Curie for assistance. We are indebted to A. Prigent, E. Hirsch, P. Michel and M. Volovitch for intellectual input.

Author information

Authors and Affiliations

Authors

Contributions

A.P. proposed the initial hypothesis that Engrailed could be used as a protective protein in animal models of Parkinson's disease. D.A.-F., J.F., F.C., O.M.-B. and R.L.J. performed experiments to study Engrailed survival activity. O.S., C.B., K.L.M., J.F., O.M.-B. and R.L.J. examined Engrailed translational targets. W.F. helped with mass spectroscopy. A.L. measured complex I activity. W.H.O. participated in discussions. J.F., D.A.-F., R.L.J., A.H. and A.P. designed the experiments and interpreted the results. D.A.-F., J.F., R.L.J. and A.P. wrote the manuscript.

Corresponding authors

Correspondence to Rajiv L Joshi, Andreas Hartmann or Alain Prochiantz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 1237 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez-Fischer, D., Fuchs, J., Castagner, F. et al. Engrailed protects mouse midbrain dopaminergic neurons against mitochondrial complex I insults. Nat Neurosci 14, 1260–1266 (2011). https://doi.org/10.1038/nn.2916

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2916

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing