Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neuromuscular synaptic patterning requires the function of skeletal muscle dihydropyridine receptors

Abstract

Developing skeletal myofibers in vertebrates are intrinsically 'pre-patterned' for motor nerve innervation. However, the intrinsic factors that regulate muscle pre-patterning remain unknown. We found that a functional skeletal muscle dihydropyridine receptor (DHPR, the L-type Ca2+ channel in muscle) was required for muscle pre-patterning during the development of the neuromuscular junction (NMJ). Targeted deletion of the β1 subunit of DHPR (Cacnb1) in mice led to muscle pre-patterning defects, aberrant innervation and precocious maturation of the NMJ. Reintroducing Cacnb1 into Cacnb1−/− muscles reversed the pre-patterning defects and restored normal development of the NMJ. The mechanism by which DHPRs govern muscle pre-patterning is independent of their role in excitation-contraction coupling, but requires Ca2+ influx through the L-type Ca2+ channel. Our findings indicate that the skeletal muscle DHPR retrogradely regulates the patterning and formation of the NMJ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of DHPR function leads to defects in muscle pre-patterning.
Figure 2: Loss of DHPR function leads to multiple synaptic sites and an expansion of innervation territories.
Figure 3: DHPR function is not required for synaptogenesis, but its absence leads to increased synaptic and muscle electrical activity.
Figure 4: Muscle-specific expression of Cacnb1 rescues the patterning defects in Cacnb1−/− muscle.
Figure 5: RyRs and DHPRs have different roles in muscle pre-patterning.
Figure 6: DHPRs pattern neuromuscular synapses by regulating the expression of the AChR genes and Musk.

Similar content being viewed by others

References

  1. Hall, Z.W. & Sanes, J.R. Synaptic structure and development: the neuromuscular junction. Cell 72 Suppl, 99–121 (1993).

    Article  Google Scholar 

  2. Lin, W. et al. Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410, 1057–1064 (2001).

    Article  CAS  Google Scholar 

  3. Yang, X., Li, W., Prescott, E.D., Burden, S.J. & Wang, J.C. DNA topoisomerase IIbeta and neural development. Science 287, 131–134 (2000).

    Article  CAS  Google Scholar 

  4. Yang, X. et al. Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron 30, 399–410 (2001).

    Article  CAS  Google Scholar 

  5. Kim, N. & Burden, S.J. MuSK controls where motor axons grow and form synapses. Nat. Neurosci. 11, 19–27 (2008).

    Article  CAS  Google Scholar 

  6. Flanagan-Steet, H., Fox, M.A., Meyer, D. & Sanes, J.R. Neuromuscular synapses can form in vivo by incorporation of initially aneural postsynaptic specializations. Development 132, 4471–4481 (2005).

    Article  CAS  Google Scholar 

  7. Panzer, J.A., Song, Y. & Balice-Gordon, R.J. In vivo imaging of preferential motor axon outgrowth to and synaptogenesis at prepatterned acetylcholine receptor clusters in embryonic zebrafish skeletal muscle. J. Neurosci. 26, 934–947 (2006).

    Article  CAS  Google Scholar 

  8. Liu, Y. et al. Essential roles of the acetylcholine receptor gamma-subunit in neuromuscular synaptic patterning. Development 135, 1957–1967 (2008).

    Article  CAS  Google Scholar 

  9. Misgeld, T., Kummer, T.T., Lichtman, J.W. & Sanes, J.R. Agrin promotes synaptic differentiation by counteracting an inhibitory effect of neurotransmitter. Proc. Natl. Acad. Sci. USA 102, 11088–11093 (2005).

    Article  CAS  Google Scholar 

  10. Lin, W. et al. Neurotransmitter acetylcholine negatively regulates neuromuscular synapse formation by a Cdk5-dependent mechanism. Neuron 46, 569–579 (2005).

    Article  CAS  Google Scholar 

  11. Fischbach, G.D., Nameroff, M. & Nelson, P.G. Electrical properties of chick skeletal muscle fibers developing in cell culture. J. Cell. Physiol. 78, 289–299 (1971).

    Article  CAS  Google Scholar 

  12. Cohen, S.A. & Fischbach, G.D. Regulation of muscle acetylcholine sensitivity by muscle activity in cell culture. Science 181, 76–78 (1973).

    Article  CAS  Google Scholar 

  13. Spector, I. & Prives, J.M. Development of electrophysiological and biochemical membrane properties during differentiation of embryonic skeletal muscle in culture. Proc. Natl. Acad. Sci. USA 74, 5166–5170 (1977).

    Article  CAS  Google Scholar 

  14. Franzini-Armstrong, C. & Jorgensen, A.O. Structure and development of E-C coupling units in skeletal muscle. Annu. Rev. Physiol. 56, 509–534 (1994).

    Article  CAS  Google Scholar 

  15. Tsien, R.W., Ellinor, P.T. & Horne, W.A. Molecular diversity of voltage-dependent Ca2+ channels. Trends Pharmacol. Sci. 12, 349–354 (1991).

    Article  CAS  Google Scholar 

  16. Gregg, R.G. et al. Absence of the beta subunit (cchb1) of the skeletal muscle dihydropyridine receptor alters expression of the alpha 1 subunit and eliminates excitation-contraction coupling. Proc. Natl. Acad. Sci. USA 93, 13961–13966 (1996).

    Article  CAS  Google Scholar 

  17. Takeshima, H. et al. Excitation-contraction uncoupling and muscular degeneration in mice lacking functional skeletal muscle ryanodine receptor gene. Nature 369, 556–559 (1994).

    Article  CAS  Google Scholar 

  18. Nakai, J. et al. Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nature 380, 72–75 (1996).

    Article  CAS  Google Scholar 

  19. Barone, V. et al. Contractile impairment and structural alterations of skeletal muscles from knockout mice lacking type 1 and type 3 ryanodine receptors. FEBS Lett. 422, 160–164 (1998).

    Article  CAS  Google Scholar 

  20. Sanes, J.R. & Lichtman, J.W. Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat. Rev. Neurosci. 2, 791–805 (2001).

    Article  CAS  Google Scholar 

  21. Arikkath, J. & Campbell, K.P. Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr. Opin. Neurobiol. 13, 298–307 (2003).

    Article  CAS  Google Scholar 

  22. Ball, S.L. et al. Role of the beta(2) subunit of voltage-dependent calcium channels in the retinal outer plexiform layer. Invest. Ophthalmol. Vis. Sci. 43, 1595–1603 (2002).

    Google Scholar 

  23. Beurg, M. et al. Recovery of Ca2+ current, charge movements, and Ca2+ transients in myotubes deficient in dihydropyridine receptor beta 1 subunit transfected with beta 1 cDNA. Biophys. J. 73, 807–818 (1997).

    Article  CAS  Google Scholar 

  24. Coronado, R., Morrissette, J., Sukhareva, M. & Vaughan, D.M. Structure and function of ryanodine receptors. Am. J. Physiol. 266, C1485–C1504 (1994).

    Article  CAS  Google Scholar 

  25. Bertocchini, F. et al. Requirement for the ryanodine receptor type 3 for efficient contraction in neonatal skeletal muscles. EMBO J. 16, 6956–6963 (1997).

    Article  CAS  Google Scholar 

  26. Duclert, A. & Changeux, J.P. Acetylcholine receptor gene expression at the developing neuromuscular junction. Physiol. Rev. 75, 339–368 (1995).

    Article  CAS  Google Scholar 

  27. Blau, H.M., Chiu, C.P. & Webster, C. Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell 32, 1171–1180 (1983).

    Article  CAS  Google Scholar 

  28. Lee, K.S. & Tsien, R.W. Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells. Nature 302, 790–794 (1983).

    Article  CAS  Google Scholar 

  29. Ahern, C.A. et al. Ca2+ current and charge movements in skeletal myotubes promoted by the beta-subunit of the dihydropyridine receptor in the absence of ryanodine receptor type 1. Biophys. J. 84, 942–959 (2003).

    Article  CAS  Google Scholar 

  30. Strube, C., Beurg, M., Powers, P.A., Gregg, R.G. & Coronado, R. Reduced Ca2+ current, charge movement, and absence of Ca2+ transients in skeletal muscle deficient in dihydropyridine receptor beta 1 subunit. Biophys. J. 71, 2531–2543 (1996).

    Article  CAS  Google Scholar 

  31. Jorgensen, A.O., Shen, A.C., Arnold, W., Leung, A.T. & Campbell, K.P. Subcellular distribution of the 1,4-dihydropyridine receptor in rabbit skeletal muscle in situ: an immunofluorescence and immunocolloidal gold-labeling study. J. Cell Biol. 109, 135–147 (1989).

    Article  CAS  Google Scholar 

  32. Gomez-Ospina, N., Tsuruta, F., Barreto-Chang, O., Hu, L. & Dolmetsch, R. The C terminus of the L-type voltage-gated calcium channel Ca(V)1.2 encodes a transcription factor. Cell 127, 591–606 (2006).

    Article  CAS  Google Scholar 

  33. Schroder, E., Byse, M. & Satin, J. L-type calcium channel C terminus autoregulates transcription. Circ. Res. 104, 1373–1381 (2009).

    Article  CAS  Google Scholar 

  34. Zhang, Y. et al. The beta subunit of voltage-gated Ca2+ channels interacts with and regulates the activity of a novel isoform of Pax6. J. Biol. Chem. 285, 2527–2536 (2010).

    Article  CAS  Google Scholar 

  35. Pai, A.C. Developmental genetics of a lethal mutation, muscular dysgenesis (mdg), in the mouse. I. Genetic analysis and gross morphology. Dev. Biol. 11, 82–92 (1965).

    Article  CAS  Google Scholar 

  36. Pai, A.C. Developmental genetics of a lethal mutation, muscular dysgenesis (mdg), in the mouse. II. Developmental analysis. Dev. Biol. 11, 93–109 (1965).

    Article  CAS  Google Scholar 

  37. Powell, J.A., Rieger, F., Blondet, B., Dreyfus, P. & Pincon-Raymond, M. Distribution and quantification of ACh receptors and innervation in diaphragm muscle of normal and mdg mouse embryos. Dev. Biol. 101, 168–180 (1984).

    Article  CAS  Google Scholar 

  38. Knudson, C.M. et al. Specific absence of the alpha 1 subunit of the dihydropyridine receptor in mice with muscular dysgenesis. J. Biol. Chem. 264, 1345–1348 (1989).

    CAS  PubMed  Google Scholar 

  39. Koenig, J., Bournaud, R., Powell, J.A. & Rieger, F. Appearance of contractile activity in muscular dysgenesis (mdg/mdg) mouse myotubes during coculture with normal spinal cord cells. Dev. Biol. 92, 188–196 (1982).

    Article  CAS  Google Scholar 

  40. Rieger, F. et al. Restoration of dysgenic muscle contraction and calcium channel function by co-culture with normal spinal cord neurons. Nature 330, 563–566 (1987).

    Article  CAS  Google Scholar 

  41. Lomo, T. & Rosenthal, J. Control of ACh sensitivity by muscle activity in the rat. J. Physiol. (Lond.) 221, 493–513 (1972).

    Article  CAS  Google Scholar 

  42. Witzemann, V., Brenner, H.R. & Sakmann, B. Neural factors regulate AChR subunit mRNAs at rat neuromuscular synapses. J. Cell Biol. 114, 125–141 (1991).

    Article  CAS  Google Scholar 

  43. Valenzuela, D.M. et al. Receptor tyrosine kinase specific for the skeletal muscle lineage: expression in embryonic muscle, at the neuromuscular junction, and after injury. Neuron 15, 573–584 (1995).

    Article  CAS  Google Scholar 

  44. Lomo, T. & Westgaard, R.H. Further studies on the control of ACh sensitivity by muscle activity in the rat. J. Physiol. (Lond.) 252, 603–626 (1975).

    Article  CAS  Google Scholar 

  45. Méjat, A. et al. Histone deacetylase 9 couples neuronal activity to muscle chromatin acetylation and gene expression. Nat. Neurosci. 8, 313–321 (2005).

    Article  Google Scholar 

  46. Tang, H. et al. A histone deacetylase 4/myogenin positive feedback loop coordinates denervation-dependent gene induction and suppression. Mol. Biol. Cell 20, 1120–1131 (2009).

    Article  CAS  Google Scholar 

  47. Rotzler, S., Schramek, H. & Brenner, H.R. Metabolic stabilization of endplate acetylcholine receptors regulated by Ca2+ influx associated with muscle activity. Nature 349, 337–339 (1991).

    Article  CAS  Google Scholar 

  48. Deisseroth, K., Mermelstein, P.G., Xia, H. & Tsien, R.W. Signaling from synapse to nucleus: the logic behind the mechanisms. Curr. Opin. Neurobiol. 13, 354–365 (2003).

    Article  CAS  Google Scholar 

  49. West, A.E., Griffith, E.C. & Greenberg, M.E. Regulation of transcription factors by neuronal activity. Nat. Rev. Neurosci. 3, 921–931 (2002).

    Article  CAS  Google Scholar 

  50. Arber, S. et al. Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron 23, 659–674 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Takahashi, E. Olson, B. Szaro, J. Johnson, C. Green, K. Walton, J. Terman, J. McArdle and R. Bassel-Duby for critical reading and commenting on the manuscript, S. Cannon, D. Francis, E. Kavalali and I. Bezprozvanny for valuable suggestions on muscle physiology and S. Burden for AChRα and MuSK in situ probes. This study was supported by grants (to W.L.) from the US National Institutes of Health/National Institute of Neurological Disorders and Stroke (NS 055028), the Edward Mallinckrodt, Jr. Scholar Program, and the Cain Foundation in Medical Research at University of Texas Southwestern Medical Center, and by a grant (to P.D.A.) from the US National Institutes of Health/National Institute of Arthritis and Musculoskeletal and Skin Diseases (P01AR044750).

Author information

Authors and Affiliations

Authors

Contributions

F.C., Y.L. and Y.S. carried out the experiment and collected and analyzed the data. P.D.A. provided the RyR mutant mice. R.G.G. provided the DHPR mutant mice. W.L. supervised the project and wrote the manuscript with critical input from F.C., Y.L., Y.S., P.D.A. and R.G.G.

Corresponding author

Correspondence to Weichun Lin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 1505 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, F., Liu, Y., Sugiura, Y. et al. Neuromuscular synaptic patterning requires the function of skeletal muscle dihydropyridine receptors. Nat Neurosci 14, 570–577 (2011). https://doi.org/10.1038/nn.2792

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2792

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing