Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GRLD-1 regulates cell-wide abundance of glutamate receptor through post-transcriptional regulation

Abstract

AMPA receptors mediate most of the fast postsynaptic response at glutamatergic synapses. The abundance of AMPA receptors in neurons and at postsynaptic membranes is tightly regulated. It has been suggested that changes in synaptic AMPA receptor levels are an important regulatory event in synaptic plasticity and learning and memory. Although the local, synapse-specific regulation of AMPA receptors has been intensely studied, global, cell-wide control is less well understood. Using a forward genetic approach, we identified glutamate receptor level decreased-1 (GRLD-1), a putative RNA-binding protein that was required for efficient production of GLR-1 in the AVE interneurons in the nematode Caenorhabditis elegans. In grld-1 mutants, GLR-1 levels were markedly reduced. Consistently, glutamate-induced currents in AVE were diminished and glr-1–dependent nose-touch avoidance behavior was defective in grld-1 mutants. We propose that this evolutionarily conserved family of proteins controls the abundance of GLR-1 by regulating glr-1 transcript splicing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: grld-1(wy225) mutants have decreased levels of GLR-1 in AVE.
Figure 2: grld-1 mutants are nose-touch defective and exhibit decreased glutamate-gated currents.
Figure 3: GRLD-1 is a member of the SPEN family.
Figure 4: GRLD-1 acts cell autonomously in AVE.
Figure 5: The GRLD-1 RRMs are sufficient to rescue GLR-1 levels in AVE.
Figure 6: Expression of glr-1 cDNA bypasses the requirement for grld-1.
Figure 7: Expression of grld-1 after initial development can rescue GLR-1 levels.

Similar content being viewed by others

References

  1. Shepherd, J.D. & Huganir, R.L. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu. Rev. Cell Dev. Biol. 23, 613–643 (2007).

    Article  CAS  Google Scholar 

  2. Turrigiano, G.G., Leslie, K.R., Desai, N.S., Rutherford, L.C. & Nelson, S.B. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896 (1998).

    Article  CAS  Google Scholar 

  3. Maghsoodi, B. et al. Retinoic acid regulates RARalpha-mediated control of translation in dendritic RNA granules during homeostatic synaptic plasticity. Proc. Natl. Acad. Sci. USA 105, 16015–16020 (2008).

    Article  CAS  Google Scholar 

  4. Hart, A.C., Sims, S. & Kaplan, J.M. Synaptic code for sensory modalities revealed by C. elegans GLR-1 glutamate receptor. Nature 378, 82–85 (1995).

    Article  CAS  Google Scholar 

  5. Brockie, P.J., Madsen, D.M., Zheng, Y., Mellem, J. & Maricq, A.V. Differential expression of glutamate receptor subunits in the nervous system of Caenorhabditis elegans and their regulation by the homeodomain protein UNC-42. J. Neurosci. 21, 1510–1522 (2001).

    Article  CAS  Google Scholar 

  6. Maricq, A.V., Peckol, E., Driscoll, M. & Bargmann, C.I. Mechanosensory signaling in C. elegans mediated by the GLR-1 glutamate receptor. Nature 378, 78–81 (1995).

    Article  CAS  Google Scholar 

  7. Brockie, P.J. & Maricq, A.V. Ionotropic glutamate receptors: genetics, behavior and electrophysiology. in WormBook (ed. The C. elegans Research Community) doi:10.1895/wormbook.1.61.1, <http://www.wormbook.org/> (2006).

  8. Grunwald, M.E., Mellem, J.E., Strutz, N., Maricq, A.V. & Kaplan, J.M. Clathrin-mediated endocytosis is required for compensatory regulation of GLR-1 glutamate receptors after activity blockade. Proc. Natl. Acad. Sci. USA 101, 3190–3195 (2004).

    Article  CAS  Google Scholar 

  9. Rongo, C., Whitfield, C.W., Rodal, A., Kim, S.K. & Kaplan, J.M. LIN-10 is a shared component of the polarized protein localization pathways in neurons and epithelia. Cell 94, 751–759 (1998).

    Article  CAS  Google Scholar 

  10. Rongo, C. & Kaplan, J.M. CaMKII regulates the density of central glutamatergic synapses in vivo. Nature 402, 195–199 (1999).

    Article  CAS  Google Scholar 

  11. Juo, P. & Kaplan, J.M. The anaphase-promoting complex regulates the abundance of GLR-1 glutamate receptors in the ventral nerve cord of C. elegans. Curr. Biol. 14, 2057–2062 (2004).

    Article  CAS  Google Scholar 

  12. Burbea, M., Dreier, L., Dittman, J.S., Grunwald, M.E. & Kaplan, J.M. Ubiquitin and AP180 regulate the abundance of GLR-1 glutamate receptors at postsynaptic elements in C. elegans. Neuron 35, 107–120 (2002).

    Article  CAS  Google Scholar 

  13. Zheng, Y., Mellem, J.E., Brockie, P.J., Madsen, D.M. & Maricq, A.V. SOL-1 is a CUB-domain protein required for GLR-1 glutamate receptor function in C. elegans. Nature 427, 451–457 (2004).

    Article  CAS  Google Scholar 

  14. Fei, Y.J. et al. A novel H+-coupled oligopeptide transporter (OPT3) from Caenorhabditis elegans with a predominant function as a H+ channel and an exclusive expression in neurons. J. Biol. Chem. 275, 9563–9571 (2000).

    Article  CAS  Google Scholar 

  15. White, J.G., Southgate, E., Thomson, J.N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B. 314, 1–340 (1986).

    Article  CAS  Google Scholar 

  16. Riddle, D.L. C. elegans II (Cold Spring Harbor Laboratory Press, Plainview, New York, 1997).

  17. Paganoni, S. & Ferreira, A. Expression and subcellular localization of Ror tyrosine kinase receptors are developmentally regulated in cultured hippocampal neurons. J. Neurosci. Res. 73, 429–440 (2003).

    Article  CAS  Google Scholar 

  18. Sieburth, D. et al. Systematic analysis of genes required for synapse structure and function. Nature 436, 510–517 (2005).

    Article  CAS  Google Scholar 

  19. Kuang, B., Wu, S.C., Shin, Y., Luo, L. & Kolodziej, P. split ends encodes large nuclear proteins that regulate neuronal cell fate and axon extension in the Drosophila embryo. Development 127, 1517–1529 (2000).

    CAS  PubMed  Google Scholar 

  20. Ludewig, A.H. et al. A novel nuclear receptor/coregulator complex controls C. elegans lipid metabolism, larval development, and aging. Genes Dev. 18, 2120–2133 (2004).

    Article  CAS  Google Scholar 

  21. Tursun, B., Cochella, L., Carrera, I. & Hobert, O. A toolkit and robust pipeline for the generation of fosmid-based reporter genes in C. elegans. PLoS ONE 4, e4625 (2009).

    Article  Google Scholar 

  22. Ma, X. et al. Rbm15 modulates Notch-induced transcriptional activation and affects myeloid differentiation. Mol. Cell. Biol. 27, 3056–3064 (2007).

    Article  CAS  Google Scholar 

  23. Hiriart, E. et al. Interaction of the Epstein-Barr virus mRNA export factor EB2 with human Spen proteins SHARP, OTT1, and a novel member of the family, OTT3, links Spen proteins with splicing regulation and mRNA export. J. Biol. Chem. 280, 36935–36945 (2005).

    Article  CAS  Google Scholar 

  24. Oswald, F. et al. SHARP is a novel component of the Notch/RBP-Jkappa signaling pathway. EMBO J. 21, 5417–5426 (2002).

    Article  CAS  Google Scholar 

  25. Shi, Y. et al. Sharp, an inducible cofactor that integrates nuclear receptor repression and activation. Genes Dev. 15, 1140–1151 (2001).

    Article  CAS  Google Scholar 

  26. Johns, L., Grimson, A., Kuchma, S.L., Newman, C.L. & Anderson, P. Caenorhabditis elegans SMG-2 selectively marks mRNAs containing premature translation termination codons. Mol. Cell. Biol. 27, 5630–5638 (2007).

    Article  CAS  Google Scholar 

  27. Bolognani, F. & Perrone-Bizzozero, N.I. RNA-protein interactions and control of mRNA stability in neurons. J. Neurosci. Res. 86, 481–489 (2008).

    Article  CAS  Google Scholar 

  28. Merritt, C., Rasoloson, D., Ko, D. & Seydoux, G. 3′ UTRs are the primary regulators of gene expression in the C. elegans germline. Curr. Biol. 18, 1476–1482 (2008).

    Article  CAS  Google Scholar 

  29. Stringham, E.G., Dixon, D.K., Jones, D. & Candido, E.P. Temporal and spatial expression patterns of the small heat shock (hsp16) genes in transgenic Caenorhabditis elegans. Mol. Biol. Cell 3, 221–233 (1992).

    Article  CAS  Google Scholar 

  30. Lein, E.S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    Article  CAS  Google Scholar 

  31. Yabe, D. et al. Generation of a conditional knockout allele for mammalian Spen protein Mint/SHARP. Genesis 45, 300–306 (2007).

    Article  CAS  Google Scholar 

  32. Kolodziej, P.A., Jan, L.Y. & Jan, Y.N. Mutations that affect the length, fasciculation or ventral orientation of specific sensory axons in the Drosophila embryo. Neuron 15, 273–286 (1995).

    Article  CAS  Google Scholar 

  33. Jemc, J. & Rebay, I. Characterization of the split ends-like gene spenito reveals functional antagonism between SPOC family members during Drosophila eye development. Genetics 173, 279–286 (2006).

    Article  CAS  Google Scholar 

  34. Chang, J.L., Lin, H.V., Blauwkamp, T.A. & Cadigan, K.M. Spenito and Split ends act redundantly to promote Wingless signaling. Dev. Biol. 314, 100–111 (2008).

    Article  CAS  Google Scholar 

  35. Maris, C., Dominguez, C. & Allain, F.H. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J. 272, 2118–2131 (2005).

    Article  CAS  Google Scholar 

  36. Feng, Y. et al. Drosophila split ends homologue SHARP functions as a positive regulator of Wnt/beta-catenin/T-cell factor signaling in neoplastic transformation. Cancer Res. 67, 482–491 (2007).

    Article  CAS  Google Scholar 

  37. Kuroda, K. et al. Regulation of marginal zone B cell development by MINT, a suppressor of Notch/RBP-J signaling pathway. Immunity 18, 301–312 (2003).

    Article  CAS  Google Scholar 

  38. Lindtner, S. et al. RNA-binding motif protein 15 binds to the RNA transport element RTE and provides a direct link to the NXF1 export pathway. J. Biol. Chem. 281, 36915–36928 (2006).

    Article  CAS  Google Scholar 

  39. Zhou, Z., Licklider, L.J., Gygi, S.P. & Reed, R. Comprehensive proteomic analysis of the human spliceosome. Nature 419, 182–185 (2002).

    Article  CAS  Google Scholar 

  40. Moore, M.J. & Proudfoot, N.J. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136, 688–700 (2009).

    Article  CAS  Google Scholar 

  41. Le Hir, H., Nott, A. & Moore, M.J. How introns influence and enhance eukaryotic gene expression. Trends Biochem. Sci. 28, 215–220 (2003).

    Article  CAS  Google Scholar 

  42. Mu, Y., Otsuka, T., Horton, A.C., Scott, D.B. & Ehlers, M.D. Activity-dependent mRNA splicing controls ER export and synaptic delivery of NMDA receptors. Neuron 40, 581–594 (2003).

    Article  CAS  Google Scholar 

  43. Goodman, M.B., Hall, D.H., Avery, L. & Lockery, S.R. Active currents regulate sensitivity and dynamic range in C. elegans neurons. Neuron 20, 763–772 (1998).

    Article  CAS  Google Scholar 

  44. Mello, C. & Fire, A. DNA transformation. Methods Cell Biol. 48, 451–482 (1995).

    Article  CAS  Google Scholar 

  45. Girard, L.R. et al. WormBook: the online review of Caenorhabditis elegans biology. Nucleic Acids Res. 35, D472–D475 (2007).

    Article  CAS  Google Scholar 

  46. Wang, D. et al. Somatic misexpression of germline P granules and enhanced RNA interference in retinoblastoma pathway mutants. Nature 436, 593–597 (2005).

    Article  CAS  Google Scholar 

  47. Poon, V.Y., Klassen, M.P. & Shen, K. UNC-6/netrin and its receptor UNC-5 locally exclude presynaptic components from dendrites. Nature 455, 669–673 (2008).

    Article  CAS  Google Scholar 

  48. Brockie, P.J., Mellem, J.E., Hills, T., Madsen, D.M. & Maricq, A.V. The C. elegans glutamate receptor subunit NMR-1 is required for slow NMDA-activated currents that regulate reversal frequency during locomotion. Neuron 31, 617–630 (2001).

    Article  CAS  Google Scholar 

  49. Ward, A., Liu, J., Feng, Z. & Xu, X.Z. Light-sensitive neurons and channels mediate phototaxis in C. elegans. Nat. Neurosci. 11, 916–922 (2008).

    Article  CAS  Google Scholar 

  50. Richmond, J.E. & Jorgensen, E.M. One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nat. Neurosci. 2, 791–797 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the International Caenorhabditis Genetic Center for worm strains and the Antebi, Bargmann, Kaplan and Sengupta laboratories for strains and constructs. We also thank Q. Hu, C. Gao, F. Chen and Y. Fu for assistance and members of the Shen laboratory for comments on the manuscript. This work was supported by grants from the Human Frontier Science Foundation, the W.M. Keck Foundation and the Howard Hughes Medical Institute to K.S., the Pew Scholar Award and the US National Institutes of Health to X.Z.S.X. and the National Science Foundation Graduate Research Fellowship Program and the Burt and Deedee McMurtry Stanford Graduate Fellowship to G.J.W.

Author information

Authors and Affiliations

Authors

Contributions

G.J.W. performed most of the experiments. X.Z.S.X. supervised L.K., who carried out the electrophysiological experiments. J.E.K. contributed to the initial screen and transgene development. G.S.M. contributed to the intron experiments. K.S., G.J.W. and G.S.M. analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Kang Shen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and List of Constructs (PDF 1108 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Kang, L., Kim, J. et al. GRLD-1 regulates cell-wide abundance of glutamate receptor through post-transcriptional regulation. Nat Neurosci 13, 1489–1495 (2010). https://doi.org/10.1038/nn.2667

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2667

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing