Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Zebrafish atlastin controls motility and spinal motor axon architecture via inhibition of the BMP pathway

Abstract

To better understand hereditary spastic paraplegia (HSP), we characterized the function of atlastin, a protein that is frequently involved in juvenile forms of HSP, by analyzing loss- and gain-of-function phenotypes in the developing zebrafish. We found that knockdown of the gene for atlastin (atl1) caused a severe decrease in larval mobility that was preceded by abnormal architecture of spinal motor axons and was associated with a substantial upregulation of the bone morphogenetic protein (BMP) signaling pathway. Overexpression analyses confirmed that atlastin inhibits BMP signaling. In primary cultures of zebrafish spinal neurons, Atlastin partially colocalized with type I BMP receptors in late endosomes distributed along neurites, which suggests that atlastin may regulate BMP receptor trafficking. Finally, genetic or pharmacological inhibition of BMP signaling was sufficient to rescue the loss of mobility and spinal motor axon defects of atl1 morphants, emphasizing the importance of fine-tuning the balance of BMP signaling for vertebrate motor axon architecture and stability.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Zebrafish atl1 expression and knockdown.
Figure 2: Knockdown of atl1 causes a strong decrease in larval mobility.
Figure 3: Knockdown of atl1 leads to abnormal architecture of SMN axons.
Figure 4: Effect of transplanted SMNs on larval mobility.
Figure 5: Atlastin inhibits BMP signaling.
Figure 6: Upregulation of BMP signaling in atl1 morphant embryos.
Figure 7: Atlastin and type I BMP receptor (BMPRI) partially co-localize to late endosomes in zebrafish spinal neurons.
Figure 8: Genetic inhibition of BMP signaling rescues atl1 morphant mobility and spinal motor axon architecture.

Similar content being viewed by others

References

  1. Tessier-Lavigne, M. & Goodman, C.S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Dickson, B.J. Molecular mechanisms of axon guidance. Science 298, 1959–1964 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Charron, F. & Tessier-Lavigne, M. Novel brain wiring functions for classical morphogens: a role as graded positional cues in axon guidance. Development 132, 2251–2262 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Zou, Y. & Lyuksyutova, A.I. Morphogens as conserved axon guidance cues. Curr. Opin. Neurobiol. 17, 22–28 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Colavita, A., Krishna, S., Zheng, H., Padgett, R.W. & Culotti, J.G. Pioneer axon guidance by UNC-129, a C. elegans TGF-beta. Science 281, 706–709 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Aberle, H. et al. Wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron 33, 545–558 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Marqués, G. et al. The Drosophila BMP type II receptor Wishful Thinking regulates neuromuscular synapse morphology and function. Neuron 33, 529–543 (2002).

    Article  PubMed  Google Scholar 

  8. McCabe, B.D. et al. The BMP homolog Gbb provides a retrograde signal that regulates synaptic growth at the Drosophila neuromuscular junction. Neuron 39, 241–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. McCabe, B.D. et al. Highwire regulates presynaptic BMP signaling essential for synaptic growth. Neuron 41, 891–905 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, X., Shaw, W.R., Tsang, H.T., Reid, E. & O'Kane, C.J. Drosophila spichthyin inhibits BMP signaling and regulates synaptic growth and axonal microtubules. Nat. Neurosci. 10, 177–185 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ratnaparkhi, A., Lawless, G.M., Schweizer, F.E., Golshani, P. & Jackson, G.R. A Drosophila model of ALS: human ALS-associated mutation in VAP33A suggests a dominant negative mechanism. PLoS ONE 3, e2334 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chang, H.C. et al. Modeling spinal muscular atrophy in Drosophila. PLoS ONE 3, e3209 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Reid, E. Science in motion: common molecular pathological themes emerge in the hereditary spastic paraplegias. J. Med. Genet. 40, 81–86 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Salinas, S., Proukakis, C., Crosby, A. & Warner, T.T. Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms. Lancet Neurol. 7, 1127–1138 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Dürr, A. et al. Atlastin1 mutations are frequent in young-onset autosomal dominant spastic paraplegia. Arch. Neurol. 61, 1867–1872 (2004).

    Article  PubMed  Google Scholar 

  16. Zhao, X. et al. Mutation in a newly identified GTPase gene cause autosomal dominant hereditary spastic paraplegia. Nat. Genet. 29, 326–331 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Zhu, P.P. et al. Cellular localization, oligomerization and membrane association of the hereditary spastic paraplegia 3A (SPG3A) protein atlastin. J. Biol. Chem. 278, 49063–49071 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Scarano, V. et al. The R495W mutation in SPG3A causes spastic paraplegia associated with axonal neuropathy. J. Neurol. 252, 901–903 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Smith, B.N. et al. Four novel SPG3A/atlastin mutations identified in autosomal dominant hereditary spastic paraplegia kindreds with intra-familial variability in age of onset and complex phenotype. Clin. Genet. 75, 485–489 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Fusco, C. et al. Hereditary spastic paraplegia and axonal motor neuropathy caused by a novel SPG3A de novo mutation. Brain Dev. 32, 592–594 (2010).

    Article  PubMed  Google Scholar 

  21. Rainier, S., Sher, C., Reish, O., Thomas, D. & Fink, J.K. De novo occurrence of novel SPG3A/atlastin mutation presenting as cerebral palsy. Arch. Neurol. 63, 445–447 (2006).

    Article  PubMed  Google Scholar 

  22. Namekawa, M. et al. Mutations in the SPG3A gene encoding the GTPase atlastin interfere with vesicle trafficking in the ER/Golgi interface and Golgi morphogenesis. Mol. Cell. Neurosci. 35, 1–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Sanderson, C.M. et al. Spastin and atlastin, two proteins mutated in autosomal-dominant hereditary spastic paraplegia, are binding partners. Hum. Mol. Genet. 15, 307–318 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Rismanchi, N., Soderblom, C., Stadler, J., Zhu, P.P. & Blackstone, C. Atlastin GTPases are required for Golgi apparatus and ER morphogenesis. Hum. Mol. Genet. 17, 1591–1604 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Orso, G. et al. Homotypic fusion of ER membranes requires the dynamin-like GTPase Atlastin. Nature 460, 978–983 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Hu, J. et al. A class of dynamin-like GTPases involved in the generation of the tubular ER network. Cell 138, 549–561 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhu, P.P., Soderblom, C., Tao-Cheng, J.H., Stadler, J. & Blackstone, C. SPG3A protein atlastin-1 is enriched in growth cones and promotes axon elongation during neuronal development. Hum. Mol. Genet. 15, 1343–1353 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Park, H.C., Mehta, A., Richardson, J.S. & Appel, B. Olig2 is required for zebrafish primary motor neuron and oligodendrocyte development. Dev. Biol. 248, 356–368 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Flanagan-Steet, H., Fox, M.A., Meyer, D. & Sanes, J.R. Neuromuscular synapses can form in vivo by incorporation of initially aneural postsynaptic specializations. Development 132, 4471–4481 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Mintzer, K.A. et al. lost-a-fin encodes a type I BMP receptor, Alk8, acting maternally and zygotically in dorsoventral pattern formation. Development 128, 859–869 (2001).

    CAS  PubMed  Google Scholar 

  31. Schulte-Merker, S., Lee, K.J., McMahon, A.P. & Hammerschmidt, M. The zebrafish organizer requires chordino. Nature 387, 862–863 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Kobielak, K., Pasolli, H.A., Alonso, L., Polak, L. & Fuchs, E. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. J. Cell Biol. 163, 609–623 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tsang, H.T. et al. The hereditary spastic paraplegia proteins NIPA1, spastin and spartin are inhibitors of mammalian BMP signaling. Hum. Mol. Genet. 18, 3805–3821 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pyati, U.J., Webb, A.E. & Kimelman, D. Transgenic zebrafish reveal stage-specific roles for Bmp signaling in ventral and posterior mesoderm development. Development 132, 2333–2343 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Yu, P.B. et al. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat. Chem. Biol. 4, 33–41 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wen, Z. et al. BMP gradients steer nerve growth cones by a balancing act of LIM kinase and Slingshot phosphatase on ADF/cofilin. J. Cell Biol. 178, 107–119 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ball, R.W. et al. Retrograde BMP signaling controls synaptic growth at the NMJ by regulating Trio expression in motor neurons. Neuron 66, 536–549 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Eaton, B.A. & Davies, G.W. LIM kinase1 controls synaptic stability downstream of the type II BMP receptor. Neuron 47, 695–708 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Yang, Y.S. & Strittmatter, S.M. The reticulons: a family of proteins with diverse functions. Genome Biol. 8, 234 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liu, Y. et al. Reticulon RTN2B regulates trafficking and function of neuronal glutamate transporter EAAC1. J. Biol. Chem. 283, 6561–6571 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Piddini, E. & Vincent, J.P. Modulation of developmental signals by endocytosis: different means and many ends. Curr. Opin. Cell Biol. 15, 474–481 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. O'Connor-Giles, K.M., Ho, L.L. & Ganetzky, B. Nervous wreck interacts with Thickveins and the endocytic machinery to attenuate retrograde BMP signaling during synaptic growth. Neuron 58, 507–518 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Matsuura, I., Taniguchi, J., Hata, K., Saeki, N. & Yamashita, T. BMP inhibition enhances axonal growth and functional recovery after spinal cord injury. J. Neurochem. 105, 1471–1479 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Higashijima, S., Hotta, Y. & Okamoto, H. Visualization of cranial motor neurons in live transgenic zebrafish expressing green fluorescent protein under the control of the islet-1 promoter/enhancer. J. Neurosci. 20, 206–218 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B. & Schilling, T.F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Macdonald, R. et al. Regulatory gene expression boundaries demarcate sites of neuronal differentiation in the embryonic zebrafish forebrain. Neuron 13, 1039–1053 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Shanmugalingam, S. et al. Ace/Fgf8 is required for forebrain commissure formation and patterning of the telencephalon. Development 127, 2549–2561 (2000).

    CAS  PubMed  Google Scholar 

  48. Andersen, S.S.L. Preparation of dissociated zebrafish spinal neuron cultures. Methods Cell Sci. 23, 205–209 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Tarrade, A. et al. A mutation of spastin is responsible for swellings and impairment of transport in a region of axon characterized by changes in microtubule composition. Hum. Mol. Genet. 15, 3544–3558 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Clarke, M. Salanoubat, J. Weissenbach and the Houart, Schneider-Maunoury and Nothias laboratories for discussions and support, S. Llewellyn-Jones, S. Thomas and G. Rodrigues for fish care at King's College London and IFR83/ UPMC, and R. Schwartzmann and V. Georget for the IFR83 imaging platform. We thank the patients' Association Strümpell-Lorrain (A-SL) for their constant support. J.H., a CNRS research fellow, received a senior research fellowship from King's College Charitable Foundation for 2 years in C.H.'s lab. C.F. was supported by fellowships from the FRM and the AFM. This work was supported by research grants to C.H. from the MRC and from AFM and A-SL to J.H.

Author information

Authors and Affiliations

Authors

Contributions

J.H. and C.F. performed most experiments and analyzed the data with C.H. J.A.H. and S.S. helped with image acquisition and in situ hybridization and C.H. with transplantation. Half of the study was carried out in the C.H. lab by J.H., S.S.-M. and F.N. A.L. and B.G. welcomed J.H. and C.F. in their labs and gave insightful advice on the project. J.H. and C.H. designed all experiments and wrote the manuscript.

Corresponding authors

Correspondence to Corinne Houart or Jamilé Hazan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, and Tables 1 and 2 (PDF 4995 kb)

Supplementary Video 1

Abnormal touch-evoked motility of atlastin (atl1) morphant larvae. Touch-response mobility of 72-hpf (a) control larvae. (MOV 882 kb)

Supplementary Video 1

Abnormal touch-evoked motility of atlastin (atl1) morphant larvae. Touch-response mobility of 72-hpf (b) atl1 morphant larvae. (MOV 3092 kb)

Supplementary Video 1

Abnormal touch-evoked motility of atlastin (atl1) morphant larvae. Touch-response mobility of 72-hpf (c) rescued larvae co-injected with atl1 MO and human ATL1 transcript. (MOV 1289 kb)

Supplementary Video 2

The motility deficit of atlastin (atl1) The motility deficit of atlastin (atl1) morphant larvae is tightly correlated with abnormal branching of spinal motor axons. Touch-response mobility of 4-dpf (a) control (Hb9:GFP; WT). (MOV 1226 kb)

Supplementary Video 2

The motility deficit of atlastin (atl1) The motility deficit of atlastin (atl1) morphant larvae is tightly correlated with abnormal branching of spinal motor axons. Touch-response mobility of 4-dpf (b) atl1 morphant Hb9:GFP; MOatl). (MOV 1607 kb)

Supplementary Video 2

The motility deficit of atlastin (atl1) The motility deficit of atlastin (atl1) morphant larvae is tightly correlated with abnormal branching of spinal motor axons. Touch-response mobility of 4-dpf (c) transplanted (Hb9:GFP; MOatl>WT) mosaic larvae. (MOV 1194 kb)

Supplementary Video 3

The swimming deficit of atlastin (atl1) morphants is rescued by genetic inhibition of BMP signaling. Touch-response mobility of 72-hpf (a) heatshocked and non-injected Tg(hs:DN-BMPRI) transgenic larvae. (MOV 1743 kb)

Supplementary Video 3

The swimming deficit of atlastin (atl1) morphants is rescued by genetic inhibition of BMP signaling. Touch-response mobility of 72-hpf (b) atl1 morphant Tg(hs:DN-BMPRI) larvae which were not submitted to heat shock. (MOV 1835 kb)

Supplementary Video 3

The swimming deficit of atlastin (atl1) morphants is rescued by genetic inhibition of BMP signaling. Touch-response mobility of 72-hpf (c) MOatl/Tg(hs:DN-BMPRI) that were heat-shocked at 32-36 hpf and therefore expressed a dominant-negative version of type-I BMP receptor. (MOV 1273 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fassier, C., Hutt, J., Scholpp, S. et al. Zebrafish atlastin controls motility and spinal motor axon architecture via inhibition of the BMP pathway. Nat Neurosci 13, 1380–1387 (2010). https://doi.org/10.1038/nn.2662

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2662

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing