Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allosteric potentiation of glycine receptor chloride currents by glutamate

A Corrigendum to this article was published on 26 August 2011

This article has been updated

Abstract

Neuronal excitability in the CNS is primarily controlled by a balance between synaptic excitation and inhibition. In the brainstem and spinal cord, synaptic excitation and inhibition are mediated by the excitatory transmitter glutamate acting on ionotropic glutamate receptor–gated cationic channels and the inhibitory transmitter glycine acting on glycine receptor (GlyR)-gated chloride channels. We found that glutamate and its analog ligands potentiated GlyR-mediated currents in both cultured spinal neurons and spinal cord slices of rats. This potentiation was not dependent on activation of any known glutamate receptor and manifested as an increase in single-channel open probability. Moreover, this glutamate potentiation was seen in HEK293 cells that transiently expressed GlyRs. Our data strongly suggest that glutamate allosterically potentiates GlyR-gated chloride channels, thereby blurring the traditional distinction between excitatory and inhibitory transmitters. Such a rapid homeostatic regulatory mechanism may be important for tuning functional balance between synaptic excitation and inhibition in the CNS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AP5 potentiates glycinergic mIPSCs.
Figure 2: AP5 and NMDA potentiate GlyR-mediated currents via a NMDAR-independent mechanism.
Figure 3: Potentiation of GlyR-mediated currents by glutamate ligands in cultured spinal neurons.
Figure 4: AP5 increases GlyR-mediated single-channel activities in the outside-out mode.
Figure 5: AP5 increases GlyR-mediated single-channel activities in the on-attached mode.
Figure 6: Glutamate-like ligands potentiate recombinant GlyR function.
Figure 7: Glutamate potentiation of GlyR-mediated IPSCs in laminae I-II neurons in spinal cord slices.

Similar content being viewed by others

Change history

  • 13 April 2011

    In the version of this article initially published, the vertical scale bars in Figures 2c and 3a,c,d were labeled with incorrect units (μA). The correct units should be pA. Also, the vertical scale bar label (50 pA) was missing from Figure 7a, and the labels "burst duration" and "mean Po" in Figure 4e were reversed. The errors have been corrected in the HTML and PDF versions of the article.

References

  1. Mody, I., De Koninck, Y., Otis, T.S. & Soltesz, I. Bridging the cleft at GABA synapses in the brain. Trends Neurosci. 17, 517–525 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Betz, H. & Laube, B. Glycine receptors: recent insights into their structural organization and functional diversity. J. Neurochem. 97, 1600–1610 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Lynch, J.W. Molecular structure and function of the glycine receptor chloride channel. Physiol. Rev. 84, 1051–1095 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Johnson, J.W. & Ascher, P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325, 529–531 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Kleckner, N.W. & Dingledine, R. Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 241, 835–837 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Dingledine, R., Kleckner, N.W. & McBain, C.J. The glycine coagonist site of the NMDA receptor. Adv. Exp. Med. Biol. 268, 17–26 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. O'Brien, R.J. et al. The development of excitatory synapses in cultured spinal neurons. J. Neurosci. 17, 7339–7350 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Keller, A.F., Coull, J.A., Chery, N., Poisbeau, P. & De Koninck, Y. Region-specific developmental specialization of GABA-glycine cosynapses in laminas I-II of the rat spinal dorsal horn. J. Neurosci. 21, 7871–7880 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wong, E.H. et al. The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proc. Natl. Acad. Sci. USA 83, 7104–7108 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mayer, M.L. & Armstrong, N. Structure and function of glutamate receptor ion channels. Annu. Rev. Physiol. 66, 161–181 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Dingledine, R., Borges, K., Bowie, D. & Traynelis, S.F. The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61 (1999).

    CAS  PubMed  Google Scholar 

  12. Collingridge, G.L., Isaac, J.T. & Wang, Y.T. Receptor trafficking and synaptic plasticity. Nat. Rev. Neurosci. 5, 952–962 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Conn, P.J. & Pin, J.P. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 37, 205–237 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Bormann, J., Hamill, O.P. & Sakmann, B. Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones. J. Physiol. (Lond.) 385, 243–286 (1987).

    Article  CAS  Google Scholar 

  15. Twyman, R.E. & Macdonald, R.L. Kinetic properties of the glycine receptor main- and sub-conductance states of mouse spinal cord neurones in culture. J. Physiol. (Lond.) 435, 303–331 (1991).

    Article  CAS  Google Scholar 

  16. Xu, T.L., Dong, X.P. & Wang, D.S. N-methyl-D-aspartate enhancement of the glycine response in the rat sacral dorsal commissural neurons. Eur. J. Neurosci. 12, 1647–1653 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Zhu, L., Krnjevic, K., Jiang, Z., McArdle, J.J. & Ye, J.H. Ethanol suppresses fast potentiation of glycine currents by glutamate. J. Pharmacol. Exp. Ther. 302, 1193–1200 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Fucile, S., De Saint Jan, D., de Carvalho, L.P. & Bregestovski, P. Fast potentiation of glycine receptor channels of intracellular calcium in neurons and transfected cells. Neuron 28, 571–583 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Stelzer, A. & Wong, R.K. GABAA responses in hippocampal neurons are potentiated by glutamate. Nature 337, 170–173 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Baker, D.A., Xi, Z.X., Shen, H., Swanson, C.J. & Kalivas, P.W. The origin and neuronal function of in vivo nonsynaptic glutamate. J. Neurosci. 22, 9134–9141 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nyitrai, G., Kekesi, K.A. & Juhasz, G. Extracellular level of GABA and Glu: in vivo microdialysis-HPLC measurements. Curr. Top. Med. Chem. 6, 935–940 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Vogt, K.E. & Nicoll, R.A. Glutamate and gamma-aminobutyric acid mediate a heterosynaptic depression at mossy fiber synapses in the hippocampus. Proc. Natl. Acad. Sci. USA 96, 1118–1122 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Barbour, B. & Hausser, M. Intersynaptic diffusion of neurotransmitter. Trends Neurosci. 20, 377–384 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Stafford, M.M., Brown, M.N., Mishra, P., Stanwood, G.D. & Mathews, G.C. Glutamate spillover augments GABA synthesis and release from axodendritic synapses in rat hippocampus. Hippocampus 20, 134–144 (2009).

    Google Scholar 

  25. Windhorst, U. On the role of recurrent inhibitory feedback in motor control. Prog. Neurobiol. 49, 517–587 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Turrigiano, G. Homeostatic signaling: the positive side of negative feedback. Curr. Opin. Neurobiol. 17, 318–324 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Hartmann, K., Bruehl, C., Golovko, T. & Draguhn, A. Fast homeostatic plasticity of inhibition via activity-dependent vesicular filling. PLoS ONE 3, e2979 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Grillner, S. The motor infrastructure: from ion channels to neuronal networks. Nat. Rev. Neurosci. 4, 573–586 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Clements, J.D., Lester, R.A., Tong, G., Jahr, C.E. & Westbrook, G.L. The time course of glutamate in the synaptic cleft. Science 258, 1498–1501 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Otis, T.S., Wu, Y.C. & Trussell, L.O. Delayed clearance of transmitter and the role of glutamate transporters at synapses with multiple release sites. J. Neurosci. 16, 1634–1644 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bergles, D.E., Diamond, J.S. & Jahr, C.E. Clearance of glutamate inside the synapse and beyond. Curr. Opin. Neurobiol. 9, 293–298 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Caraiscos, V.B. et al. Insulin increases the potency of glycine at ionotropic glycine receptors. Mol. Pharmacol. 71, 1277–1287 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Burzomato, V., Groot-Kormelink, P.J., Sivilotti, L.G. & Beato, M. Stoichiometry of recombinant heteromeric glycine receptors revealed by a pore-lining region point mutation. Receptors Channels 9, 353–361 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Chéry, N., Yu, X.H. & de Koninck, Y. Visualization of lamina I of the dorsal horn in live adult rat spinal cord slices. J. Neurosci. Methods 96, 133–142 (2000).

    Article  PubMed  Google Scholar 

  35. Qin, F., Auerbach, A. & Sachs, F. Hidden Markov modeling for single channel kinetics with filtering and correlated noise. Biophys. J. 79, 1928–1944 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Qin, F., Auerbach, A. & Sachs, F. A direct optimization approach to hidden Markov modeling for single channel kinetics. Biophys. J. 79, 1915–1927 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Colquhoun, D. & Sigworth, F. Fitting and statistical analysis of single-channel records. in Single-Channel Recording (eds. B. Sakman & E. Neher) (Plenum Press, New York, 1995).

Download references

Acknowledgements

We thank Y.P. Li for preparation and maintenance of spinal cord neuronal cultures and L. Oschipok for his excellent editorial assistance. This work was supported by the Canadian Institutes for Health Research, the Heart and Stroke Foundation of British Columbia and Yukon, and the Taiwan Department of Health Clinical Trial and Research Center of Excellence (DOH99-TD-B-111-004). J.L. was supported by postdoctoral fellowships from National Sciences and Engineering Research Council, the Michael Smith Foundation for Health Research and the British Columbia Epilepsy Society. Y.T.W. is a Howard Hughes Medical Institute International Scholar and the holder of the Heart and Stroke Foundation of British Columbia and Yukon chair in stroke research.

Author information

Authors and Affiliations

Authors

Contributions

J.L., D.C.W. and Y.T.W. designed the experiments. J.L. performed and analyzed the experiments in cultured spinal neurons and spinal cord slices. D.C.W. performed and analyzed the experiments in HEK293 cells. J.L., D.C.W. and Y.T.W. wrote the manuscript.

Corresponding author

Correspondence to Yu Tian Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Wu, D. & Wang, Y. Allosteric potentiation of glycine receptor chloride currents by glutamate. Nat Neurosci 13, 1225–1232 (2010). https://doi.org/10.1038/nn.2633

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2633

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing