Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A parallel cholinergic brainstem pathway for enhancing locomotor drive

Abstract

The brainstem locomotor system is believed to be organized serially from the mesencephalic locomotor region (MLR) to reticulospinal neurons, which in turn project to locomotor neurons in the spinal cord. We identified brainstem muscarinoceptive neurons in lampreys (Petromyzon marinus) that received parallel inputs from the MLR and projected back to reticulospinal cells to amplify and extend the duration of locomotor output. These cells responded to muscarine with extended periods of excitation, received direct muscarinic excitation from the MLR and projected glutamatergic excitation to reticulospinal neurons. Targeted blockade of muscarine receptors over these neurons profoundly reduced MLR-induced excitation of reticulospinal neurons and markedly slowed MLR-evoked locomotion. The presence of these neurons forces us to rethink the organization of supraspinal locomotor control, to include a sustained feedforward loop that boosts locomotor output.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Muscarine-mediated activation of brainstem neurons that project to the MRRN.
Figure 2: Evoked activity in the muscarinoceptive region activates glutamatergic synapses on reticulospinal cells.
Figure 3: Paired cell recordings between neurons in the muscarinoceptive region and the MRRN reveal excitatory synaptic contacts.
Figure 4: Stimulation of the MLR activates the muscarinoceptive neurons.
Figure 5: Muscarinoceptive neuron responses to MLR stimulation are inhibited by atropine.
Figure 6: Neurons in the MLR project bilaterally to the muscarinoreceptive region.
Figure 7: Muscarinoreceptive neurons provide a sustained excitatory input to reticulospinal neurons.
Figure 8: 'Fast swimming' is prevented by inactivation of the muscarinoceptive neurons.

Similar content being viewed by others

References

  1. Grillner, S. Ion channels and locomotion. Science 278, 1087–1088 (1997).

    Article  CAS  Google Scholar 

  2. Grillner, S., Wallén, P., Saitoh, K., Kozlov, A. & Robertson, B. Neural bases of goal-directed locomotion in vertebrates—an overview. Brain Res. Rev. 57, 2–12 (2008).

    Article  Google Scholar 

  3. Dubuc, R. et al. Initiation of locomotion in lampreys. Brain Res. Rev. 57, 172–182 (2008).

    Article  Google Scholar 

  4. Armstrong, D.M. Supraspinal contributions to the initiation and control of locomotion in the cat. Prog. Neurobiol. 26, 273–361 (1986).

    Article  CAS  Google Scholar 

  5. Shik, M.L., Severin, F.V. & Orlovskii, G.N. [Control of walking and running by means of electric stimulation of the midbrain.]. Biofizika 11, 659–666 (1966).

    CAS  PubMed  Google Scholar 

  6. Skinner, R.D. & Garcia-Rill, E. The mesencephalic locomotor region (MLR) in the rat. Brain Res. 323, 385–389 (1984).

    Article  CAS  Google Scholar 

  7. Bernau, N.A., Puzdrowski, R.L. & Leonard, R.B. Identification of the midbrain locomotor region and its relation to descending locomotor pathways in the Atlantic stingray, Dasyatis sabina. Brain Res. 557, 83–94 (1991).

    Article  CAS  Google Scholar 

  8. Cabelguen, J.M., Bourcier-Lucas, C. & Dubuc, R. Bimodal locomotion elicited by electrical stimulation of the midbrain in the salamander Notophthalmus viridescens. J. Neurosci. 23, 2434–2439 (2003).

    Article  CAS  Google Scholar 

  9. Deliagina, T.G., Zelenin, P.V. & Orlovsky, G.N. Encoding and decoding of reticulospinal commands. Brain Res. Brain Res. Rev. 40, 166–177 (2002).

    Article  Google Scholar 

  10. Sirota, M.G., Di Prisco, G.V. & Dubuc, R. Stimulation of the mesencephalic locomotor region elicits controlled swimming in semi-intact lampreys. Eur. J. Neurosci. 12, 4081–4092 (2000).

    Article  CAS  Google Scholar 

  11. Brocard, F. & Dubuc, R. Differential contribution of reticulospinal cells to the control of locomotion induced by the mesencephalic locomotor region. J. Neurophysiol. 90, 1714–1727 (2003).

    Article  Google Scholar 

  12. Le Ray, D. et al. Nicotinic activation of reticulospinal cells involved in the control of swimming in lampreys. Eur. J. Neurosci. 17, 137–148 (2003).

    Article  Google Scholar 

  13. Brocard, F. et al. The transformation of a unilateral locomotor command into a symmetrical bilateral activation in the brainstem. J. Neurosci. 30, 523–533 (2010).

    Article  CAS  Google Scholar 

  14. Jahn, K. et al. Supraspinal locomotor control in quadrupeds and humans. Prog. Brain Res. 171, 353–362 (2008).

    Article  Google Scholar 

  15. Sholomenko, G.N., Funk, G.D. & Steeves, J.D. Avian locomotion activated by brainstem infusion of neurotransmitter agonists and antagonists. I. Acetylcholine excitatory amino acids and substance P. Exp. Brain Res. 85, 659–673 (1991).

    Article  CAS  Google Scholar 

  16. Homma, Y., Skinner, R.D. & Garcia-Rill, E. Effects of pedunculopontine nucleus (PPN) stimulation on caudal pontine reticular formation (PnC) neurons in vitro. J. Neurophysiol. 87, 3033–3047 (2002).

    Article  Google Scholar 

  17. Smetana, R.W., Alford, S. & Dubuc, R. Muscarinic receptor activation elicits sustained, recurring depolarizations in reticulospinal neurons. J. Neurophysiol. 97, 3181–3192 (2007).

    Article  CAS  Google Scholar 

  18. Rovainen, C.M. Physiological and anatomical studies on large neurons of central nervous system of the sea lamprey (Petromyzon marinus). I. Muller and Mauthner cells. J. Neurophysiol. 30, 1000–1023 (1967).

    Article  CAS  Google Scholar 

  19. Garcia-Rill, E. & Skinner, R.D. The mesencephalic locomotor region. II. Projections to reticulospinal neurons. Brain Res. 411, 13–20 (1987).

    Article  CAS  Google Scholar 

  20. Rye, D.B., Lee, H.J., Saper, C.B. & Wainer, B.H. Medullary and spinal efferents of the pedunculopontine tegmental nucleus and adjacent mesopontine tegmentum in the rat. J. Comp. Neurol. 269, 315–341 (1988).

    Article  CAS  Google Scholar 

  21. Pombal, M.A., Marin, O. & Gonzalez, A. Distribution of choline acetyltransferase-immunoreactive structures in the lamprey brain. J. Comp. Neurol. 431, 105–126 (2001).

    Article  CAS  Google Scholar 

  22. Di Prisco, G.V., Pearlstein, E., Robitaille, R. & Dubuc, R. Role of sensory-evoked NMDA plateau potentials in the initiation of locomotion. Science 278, 1122–1125 (1997).

    Article  CAS  Google Scholar 

  23. Garcia-Rill, E., Skinner, R.D., Conrad, C., Mosley, D. & Campbell, C. Projections of the mesencephalic locomotor region in the rat. Brain Res. Bull. 17, 33–40 (1986).

    Article  CAS  Google Scholar 

  24. Steeves, J.D. & Jordan, L.M. Autoradiographic demonstration of the projections from the mesencephalic locomotor region. Brain Res. 307, 263–276 (1984).

    Article  CAS  Google Scholar 

  25. Orlovsky, G.N. Connexions of the reticulo-spinal neuronswith the “locomotor regions” in the brainstem. Biofizika 1, 171–177 (1970).

    Google Scholar 

  26. Jahn, K. et al. Imaging human supraspinal locomotor centers in brainstem and cerebellum. Neuroimage 39, 786–792 (2008).

    Article  Google Scholar 

  27. Curró Dossi, R., Pare, D. & Steriade, M. Short-lasting nicotinic and long-lasting muscarinic depolarizing responses of thalamocortical neurons to stimulation of mesopontine cholinergic nuclei. J. Neurophysiol. 65, 393–406 (1991).

    Article  Google Scholar 

  28. Egorov, A.V., Hamam, B.N., Fransen, E., Hasselmo, M.E. & Alonso, A.A. Graded persistent activity in entorhinal cortex neurons. Nature 420, 173–178 (2002).

    Article  CAS  Google Scholar 

  29. Klink, R. & Alonso, A. Ionic mechanisms of muscarinic depolarization in entorhinal cortex layer II neurons. J. Neurophysiol. 77, 1829–1843 (1997).

    Article  CAS  Google Scholar 

  30. Dickson, C.T. & Alonso, A. Muscarinic induction of synchronous population activity in the entorhinal cortex. J. Neurosci. 17, 6729–6744 (1997).

    Article  CAS  Google Scholar 

  31. Dickson, C.T. et al. Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. J. Neurophysiol. 83, 2562–2579 (2000).

    Article  CAS  Google Scholar 

  32. Tahvildari, B., Alonso, A.A. & Bourque, C.W. Ionic basis of ON and OFF persistent activity in layer III lateral entorhinal cortical principal neurons. J. Neurophysiol. 99, 2006–2011 (2008).

    Article  Google Scholar 

  33. Garcia-Rill, E. & Skinner, R.D. The mesencephalic locomotor region. I. Activation of a medullary projection site. Brain Res. 411, 1–12 (1987).

    Article  CAS  Google Scholar 

  34. Mamiya, K., Bay, K., Skinner, R.D. & Garcia-Rill, E. Induction of long-lasting depolarization in medioventral medulla neurons by cholinergic input from the pedunculopontine nucleus. J. Appl. Physiol. 99, 1127–1137 (2005).

    Article  Google Scholar 

  35. McClellan, A.D., McPherson, D. & O'Donovan, M.J. Combined retrograde labeling and calcium imaging in spinal cord and brainstem neurons of the lamprey. Brain Res. 663, 61–68 (1994).

    Article  CAS  Google Scholar 

  36. Abramoff, M.D., Magelhaes, P.J. & Ram, S.J. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).

    Google Scholar 

  37. Blanton, M.G., Lo Turco, J.J. & Kriegstein, A.R. Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex. J. Neurosci. Methods 30, 203–210 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Veilleux for assistance with experiments, C. Valiquette for his expertise in computer programming and F. Bernard for help with the figures. We also thank E. Hamid and M. Alpert for comments and critical discussion of this manuscript. This work was funded by a grant from the National Institute of Neurological Disorders and Stroke (R01 NS052699) to S.A. and Individual and Group grants from the Canadian Institutes of Health Research (grant numbers 15129 and 15176), the Natural Sciences and Engineering Research Council of Canada (grant number 217435-01) and the Groupe de recherche sur le système nerveux central from the Fonds de la Recherche en Santé du Québec (grant number 5249 to R.D.). L.J. received a Jasper fellowship from the Groupe de recherche sur le système nerveux central.

Author information

Authors and Affiliations

Authors

Contributions

R.S. performed experiments and analyses and drafted the paper. L.J. performed experiments on the semi-intact preparation, performed analyses and helped edit the paper. R.D. helped supervise the project and edited and wrote sections of the paper. S.A. supervised the project, performed experiments and analyses, and edited the manuscript.

Corresponding author

Correspondence to Simon Alford.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 (PDF 2783 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smetana, R., Juvin, L., Dubuc, R. et al. A parallel cholinergic brainstem pathway for enhancing locomotor drive. Nat Neurosci 13, 731–738 (2010). https://doi.org/10.1038/nn.2548

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2548

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing