Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A central role for the lateral prefrontal cortex in goal-directed and stimulus-driven attention

This article has been updated

Abstract

Attention is the process that selects which sensory information is preferentially processed and ultimately reaches our awareness. Attention, however, is not a unitary process; it can be captured by unexpected or salient events (stimulus driven) or it can be deployed under voluntary control (goal directed), and these two forms of attention are implemented by largely distinct ventral and dorsal parieto-frontal networks. For coherent behavior and awareness to emerge, stimulus-driven and goal-directed behavior must ultimately interact. We found that the ventral, but not dorsal, network can account for stimulus-driven attentional limits to conscious perception, and that stimulus-driven and goal-directed attention converge in the lateral prefrontal component of that network. Although these results do not rule out dorsal network involvement in awareness when goal-directed task demands are present, they point to a general role for the lateral prefrontal cortex in the control of attention and awareness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SiB experiment (Experiment 1).
Figure 2: SiB experiment (Experiment 1) SPM.
Figure 3: Stimulus-driven and goal-directed attention activity in Experiment 1.
Figure 4: Spatial SiB experiment (Experiment 2).
Figure 5: Endogenous cueing task experiment (Experiment 3).

Similar content being viewed by others

Change history

  • 14 March 2010

    In the version of this article initially published online, the last sentence of the abstract read “suggest to” instead of “point to”. The error has been corrected for all versions of this article.

References

  1. Corbetta, M. & Shulman, G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Egeth, H.E. & Yantis, S. Visual attention: control, representation, and time course. Annu. Rev. Psychol. 48, 269–297 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Corbetta, M., Kincade, J.M., Ollinger, J.M., McAvoy, M.P. & Shulman, G.L. Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat. Neurosci. 3, 292–297 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Kastner, S., Pinsk, M.A., De Weerd, P., Desimone, R. & Ungerleider, L.G. Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22, 751–761 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Serences, J.T. et al. Coordination of voluntary and stimulus-driven attentional control in human cortex. Psychol. Sci. 16, 114–122 (2005).

    Article  PubMed  Google Scholar 

  6. Yantis, S. et al. Transient neural activity in human parietal cortex during spatial attention shifts. Nat. Neurosci. 5, 995–1002 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Chiu, Y.C. & Yantis, S. A domain-independent source of cognitive control for task sets: Shifting spatial attention and switching categorization rules. J. Neurosci. 29, 3930–3938 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Downar, J., Crawley, A.P., Mikulis, D.J. & Davis, K.D. A multimodal cortical network for the detection of changes in the sensory environment. Nat. Neurosci. 3, 277–283 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Downar, J., Crawley, A.P., Mikulis, D.J. & Davis, K.D. A cortical network sensitive to stimulus salience in a neutral behavioral context across multiple sensory modalities. J. Neurophysiol. 87, 615–620 (2002).

    Article  PubMed  Google Scholar 

  10. Horovitz, S.G., Skudlarski, P. & Gore, J.C. Correlations and dissociations between BOLD signal and P300 amplitude in an auditory oddball task: a parametric approach to combining fMRI and ERP. Magn. Reson. Imaging 20, 319–325 (2002).

    Article  PubMed  Google Scholar 

  11. Linden, D.E. et al. The functional neuroanatomy of target detection: an fMRI study of visual and auditory oddball tasks. Cereb. Cortex 9, 815–823 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Marois, R., Leung, H.C. & Gore, J.C. A stimulus-driven approach to object identity and location processing in the human brain. Neuron 25, 717–728 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Corbetta, M., Patel, G. & Shulman, G.L. The reorienting system of the human brain: from environment to theory of mind. Neuron 58, 306–324 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Buschman, T.J. & Miller, E.K. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315, 1860–1862 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Gottlieb, J. From thought to action: the parietal cortex as a bridge between perception, action and cognition. Neuron 53, 9–16 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. He, B.J. et al. Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron 53, 905–918 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Dehaene, S., Changeux, J.P., Naccache, L., Sackur, J. & Sergent, C. Conscious, preconscious and subliminal processing: a testable taxonomy. Trends Cogn. Sci. 10, 204–211 (2006).

    Article  PubMed  Google Scholar 

  18. Beck, D.M., Rees, G., Frith, C.D. & Lavie, N. Neural correlates of change detection and change blindness. Nat. Neurosci. 4, 645–650 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Rees, G., Russell, C., Frith, C.D. & Driver, J. Inattentional blindness versus inattentional amnesia for fixated, but ignored, words. Science 286, 2504–2507 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Marois, R., Chun, M.M. & Gore, J.C. Neural correlates of the attentional blink. Neuron 28, 299–308 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Marois, R., Yi, D.J. & Chun, M.M. The neural fate of consciously perceived and missed events in the attentional blink. Neuron 41, 465–472 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Rees, G., Kreiman, G. & Koch, C. Neural correlates of consciousness in humans. Nat. Rev. Neurosci. 3, 261–270 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Husain, M. & Nachev, P. Space and the parietal cortex. Trends Cogn. Sci. 11, 30–36 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Baars, B.J. In the theatre of consciousness: global workspace theory, a rigorous scientific theory of consciousness. J. Conscious. Stud. 4, 292–309 (1997).

    Google Scholar 

  25. Goodale, M.A. & Milner, A.D. Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Asplund, C.L., Todd, J.J., Snyder, A.P., Gilbert, C.M. & Marois, R. Surprise-induced blindness: a stimulus-driven attentional limit to conscious perception. J. Exp. Psychol. Hum. Percept. Perform. (in the press).

  27. Yamaguchi, S., Hale, L.A., D'Esposito, M. & Knight, R.T. Rapid prefrontal-hippocampal habituation to novel events. J. Neurosci. 24, 5356–5363 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Knight, R.T. Decreased response to novel stimuli after prefrontal lesions in man. Electroencephalogr. Clin. Neurophysiol. 59, 9–20 (1984).

    Article  CAS  PubMed  Google Scholar 

  29. Opitz, B., Mecklinger, A., Friederici, A.D. & von Cramon, D.Y. The functional neuroanatomy of novelty processing: integrating ERP and fMRI results. Cereb. Cortex 9, 379–391 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Courchesne, E., Hillyard, S.A. & Galambos, R. Stimulus novelty, task relevance and the visual evoked potential in man. Electroencephalogr. Clin. Neurophysiol. 39, 131–143 (1975).

    Article  CAS  PubMed  Google Scholar 

  31. Heilman, K.M. & Watson, R.T. Mechanisms underlying the unilateral neglect syndrome. Adv. Neurol. 18, 93–106 (1977).

    CAS  PubMed  Google Scholar 

  32. Karnath, H.O., Milner, A.D. & Vallar, G. The Cognitive and Neural Bases of Spatial Neglect (Oxford University Press, Oxford, 2002).

  33. Todd, J.J., Fougnie, D. & Marois, R. Visual short-term memory load suppresses temporo-parietal junction activity and induces inattentional blindness. Psychol. Sci. 16, 965–972 (2005).

    Article  PubMed  Google Scholar 

  34. Shulman, G.L., Astafiev, S.V., McAvoy, M.P., d'Avossa, G. & Corbetta, M. Right TPJ deactivation during visual search: functional significance and support for a filter hypothesis. Cereb. Cortex 17, 2625–2633 (2007).

    Article  PubMed  Google Scholar 

  35. Fox, M.D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 102, 9673–9678 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Posner, M.I., Snyder, C.R.R. & Davidson, B.J. Attention and the detection of signals. J. Exp. Psychol. Gen. 109, 160–174 (1980).

    Article  CAS  Google Scholar 

  37. Corbetta, M. et al. A common network of functional areas for attention and eye movements. Neuron 21, 761–773 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Kastner, S. et al. Topographic maps in human frontal cortex revealed in memory-guided saccade and spatial working-memory tasks. J. Neurophysiol. 97, 3494–3507 (2007).

    Article  PubMed  Google Scholar 

  39. Huettel, S.A., Güzeldere, G. & McCarthy, G. Dissociating the neural mechanisms of visual attention in change detection using functional MRI. J. Cogn. Neurosci. 13, 1006–1018 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Lumer, E.D., Friston, K.J. & Rees, G. Neural correlates of perceptual rivalry in the human brain. Science 280, 1930–1934 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Konen, C.S. & Kastner, S. Representation of eye movements and stimulus motion in topographically organized areas of human PPC. J. Neurosci. 28, 8361–8375 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brass, M., Derrfuss, J., Forstmann, B. & von Cramon, D.Y. The role of the inferior frontal junction in cognitive control. Trends Cogn. Sci. 9, 314–316 (2005).

    Article  PubMed  Google Scholar 

  43. Koechlin, E., Ody, C. & Kouneiher, F. The architecture of cognitive control in the human prefrontal cortex. Science 302, 1181–1185 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Marois, R. & Ivanoff, J. Capacity limits of information processing in the brain. Trends Cogn. Sci. 9, 296–305 (2005).

    Article  PubMed  Google Scholar 

  45. Talairach, J. & Tournoux, P. Co-planar Stereotaxic Atlas of the Human Brain (Thieme Medical Publishers, New York, 1988).

  46. Hoffman, E.A. & Haxby, J.V. Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nat. Neurosci. 3, 80–84 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Sheskin, D.J. Handbook of Parametric and Nonparametric Statistical Procedures 2nd Ed. (CRC Press, Boca Raton, Florida, 2000).

  48. Brainard, D.H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Pelli, D.G. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat. Vis. 10, 437–442 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Davison, A.C. & Hinkley, D.V. Bootstrap Methods and Their Application (Cambridge University Press, Cambridge, 1998).

Download references

Acknowledgements

We thank B. Rogers, J. Swisher and E. Conser. This work was supported by National Science Foundation grant 0094992 and National Institute of Mental Health grant R01 MH70776 (R.M.).

Author information

Authors and Affiliations

Authors

Contributions

C.L.A. designed and performed experiments, analyzed data, and wrote the manuscript. J.J.T. and A.P.S. designed and performed experiments. R.M. designed experiments and wrote the manuscript.

Corresponding authors

Correspondence to Christopher L Asplund or René Marois.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Tables 1 and 2, and Supplementary Data (PDF 664 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asplund, C., Todd, J., Snyder, A. et al. A central role for the lateral prefrontal cortex in goal-directed and stimulus-driven attention. Nat Neurosci 13, 507–512 (2010). https://doi.org/10.1038/nn.2509

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2509

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing