Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of neuronal activity by Cav3-Kv4 channel signaling complexes

Abstract

Kv4 low voltage–activated A-type potassium channels are widely expressed in excitable cells, where they control action potential firing, dendritic activity and synaptic integration. Kv4 channels exist as a complex that includes K+ channel–interacting proteins (KChIPs), which contain calcium-binding domains and therefore have the potential to confer calcium dependence on the Kv4 channel. We found that T-type calcium channels and Kv4 channels form a signaling complex in rat that efficiently couples calcium influx to KChIP3 to modulate Kv4 function. This interaction was critical for allowing Kv4 channels to function in the subthreshold membrane potential range to regulate neuronal firing properties. The widespread expression of these channels and accessory proteins indicates that the Cav3-Kv4 signaling complex is important for the function of a wide range of electrically excitable cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A-type channels are regulated by calcium influx through T-type channels in cerebellar stellate cells.
Figure 2: Cav3 calcium channels are coupled to the Kv4 potassium channel complex.
Figure 3: Cav3-mediated calcium influx modulates Kv4 channel inactivation when coexpressed in tsA-201 cells.
Figure 4: KChIP3 proteins act as a calcium sensor in stellate cells to modulate IA window current and the gain of spike firing.

Similar content being viewed by others

References

  1. Jerng, H.H., Pfaffinger, P.J. & Covarrubias, M. Molecular physiology and modulation of somatodendritic A-type potassium channels. Mol. Cell. Neurosci. 27, 343–369 (2004).

    Article  CAS  Google Scholar 

  2. Johnston, D. et al. Active dendrites, potassium channels and synaptic plasticity. Phil. Trans. R. Soc. Lond. B 358, 667–674 (2003).

    Article  CAS  Google Scholar 

  3. Bourdeau, M.L., Morin, F., Laurent, C.E., Azzi, M. & Lacaille, J.-C. Kv4.3-mediated A-type K+ currents underlie rhythmic activity in hippocampal interneurons. J. Neurosci. 27, 1942–1953 (2007).

    Article  CAS  Google Scholar 

  4. Covarrubias, M. et al. The neuronal Kv4 channel complex. Neurochem. Res. 33, 1558–1567 (2008).

    Article  CAS  Google Scholar 

  5. Marionneau, C. et al. Proteomic analyses of native brain K(V)4.2 channel complexes. Channels (Austin) 3, 284–294 (2009).

    Article  Google Scholar 

  6. An, W.F. et al. Modulation of A-type potassium channels by a family of calcium sensors. Nature 403, 553–556 (2000).

    Article  CAS  Google Scholar 

  7. Pioletti, M., Findeisen, F., Hura, G.L. & Minor, D.L. Jr. Three-dimensional structure of the KChIP1-Kv4.3 T1 complex reveals a cross-shaped octamer. Nat. Struct. Mol. Biol. 13, 987–995 (2006).

    Article  CAS  Google Scholar 

  8. Patel, S.P., Campbell, D.L. & Strauss, H.C. Elucidating KChIP effects on Kv4.3 inactivation and recovery kinetics with a minimal KChIP2 isoform. J. Physiol. (Lond.) 545, 5–11 (2002).

    Article  CAS  Google Scholar 

  9. Molineux, M.L., Fernandez, F.R., Mehaffey, W.H. & Turner, R.W. A-type and T-type currents interact to produce a novel spike latency-voltage relationship in cerebellar stellate cells. J. Neurosci. 25, 10863–10873 (2005).

    Article  CAS  Google Scholar 

  10. Molineux, M.L. et al. Specific T-type calcium channel isoforms are associated with distinct burst phenotypes in deep cerebellar nuclear neurons. Proc. Natl. Acad. Sci. USA 103, 5555–5560 (2006).

    Article  CAS  Google Scholar 

  11. Kollo, M., Holderith, N.B. & Nusser, Z. Novel subcellular distribution pattern of A-type K+ channels on neuronal surface. J. Neurosci. 26, 2684–2691 (2006).

    Article  CAS  Google Scholar 

  12. Häusser, M. & Clark, B.A. Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron 19, 665–678 (1997).

    Article  Google Scholar 

  13. Barmack, N.H. & Yakhnitsa, V. Functions of interneurons in mouse cerebellum. J. Neurosci. 28, 1140–1152 (2008).

    Article  CAS  Google Scholar 

  14. Suter, K.J. & Jaeger, D. Reliable control of spike rate and spike timing by rapid input transients in cerebellar stellate cells. Neuroscience 124, 305–317 (2004).

    Article  CAS  Google Scholar 

  15. McKay, B.E. et al. Ca(V)3 T-type calcium channel isoforms differentially distribute to somatic and dendritic compartments in rat central neurons. Eur. J. Neurosci. 24, 2581–2594 (2006).

    Article  Google Scholar 

  16. Fakler, B. & Adelman, J.P. Control of K(Ca) channels by calcium nano/microdomains. Neuron 59, 873–881 (2008).

    Article  CAS  Google Scholar 

  17. Maffie, J. & Rudy, B. Weighing the evidence for a ternary protein complex mediating A-type K+ currents in neurons. J. Physiol. (Lond.) 586, 5609–5623 (2008).

    Article  CAS  Google Scholar 

  18. Murakoshi, H. & Trimmer, J.S. Identification of the Kv2.1 K+ channel as a major component of the delayed rectifier K+ current in rat hippocampal neurons. J. Neurosci. 19, 1728–1735 (1999).

    Article  CAS  Google Scholar 

  19. Leclerc, G.M. & Boockfor, F.R. Calcium influx and DREAM protein are required for GnRH gene expression pulse activity. Mol. Cell. Endocrinol. 267, 70–79 (2007).

    Article  CAS  Google Scholar 

  20. Connor, J.A. & Stevens, C.F. Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. J. Physiol. (Lond.) 213, 31–53 (1971).

    Article  CAS  Google Scholar 

  21. Khaliq, Z.M. & Bean, B.P. Dynamic, nonlinear feedback regulation of slow pacemaking by A-type potassium current in ventral tegmental area neurons. J. Neurosci. 28, 10905–10917 (2008).

    Article  CAS  Google Scholar 

  22. Hoffman, D.A., Magee, J.C., Colbert, C.M. & Johnston, D. K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387, 869–875 (1997).

    Article  CAS  Google Scholar 

  23. Losonczy, A., Makara, J.K. & Magee, J.C. Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 452, 436–441 (2008).

    Article  CAS  Google Scholar 

  24. Jung, S.C., Kim, J. & Hoffman, D.A. Rapid, bidirectional remodeling of synaptic NMDA receptor subunit composition by A-type K+ channel activity in hippocampal CA1 pyramidal neurons. Neuron 60, 657–671 (2008).

    Article  CAS  Google Scholar 

  25. Wang, H. et al. Structural basis for modulation of Kv4 K+ channels by auxiliary KChIP subunits. Nat. Neurosci. 10, 32–39 (2007).

    Article  Google Scholar 

  26. Wang, X., Bao, J., Zeng, X.M., Liu, Z. & Mei, Y.A. Elevation of intracellular Ca2+ modulates A-currents in rat cerebellar granule neurons. J. Neurosci. Res. 81, 530–540 (2005).

    Article  CAS  Google Scholar 

  27. Chen, Q.X. & Wong, R.K. Intracellular Ca2+ suppressed a transient potassium current in hippocampal neurons. J. Neurosci. 11, 337–343 (1991).

    Article  CAS  Google Scholar 

  28. Tadayonnejad, R., Mehaffey, W.H., Anderson, D. & Turner, R.W. Reliability of triggering postinhibitory rebound bursts in deep cerebellar neurons. Channels (Austin) 3, 149–155 (2009).

    Article  CAS  Google Scholar 

  29. Huguenard, J.R. Low-threshold calcium currents in central nervous system neurons. Annu. Rev. Physiol. 58, 329–348 (1996).

    Article  CAS  Google Scholar 

  30. Cueni, L. et al. T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites. Nat. Neurosci. 11, 683–692 (2008).

    Article  CAS  Google Scholar 

  31. Buxbaum, J.D. et al. Calsenilin: a calcium-binding protein that interacts with the presenilins and regulates the levels of a presenilin fragment. Nat. Med. 4, 1177–1181 (1998).

    Article  CAS  Google Scholar 

  32. Carrión, A.M., Link, W.A., Ledo, F., Mellstrom, B. & Naranjo, J.R. DREAM is a Ca2+-regulated transcriptional repressor. Nature 398, 80–84 (1999).

    Article  Google Scholar 

  33. Lusin, J.D., Vanarotti, M., Li, C., Valiveti, A. & Ames, J.B. NMR structure of DREAM: Implications for Ca2+-dependent DNA binding and protein dimerization. Biochemistry 47, 2252–2264 (2008).

    Article  CAS  Google Scholar 

  34. Venn, N., Haynes, L.P. & Burgoyne, R.D. Specific effects of KChIP3/calsenilin/DREAM, but not KChIPs 1, 2 and 4, on calcium signaling and regulated secretion in PC12 cells. Biochem. J. 413, 71–80 (2008).

    Article  CAS  Google Scholar 

  35. Nicholson, C., ten Bruggencate, G., Stockle, H. & Steinberg, R. Calcium and potassium changes in extracellular microenvironment of cat cerebellar cortex. J. Neurophysiol. 41, 1026–1039 (1978).

    Article  CAS  Google Scholar 

  36. Cueni, L., Canepari, M., Adelman, J.P. & Luthi, A. Ca2+ signaling by T-type Ca2+ channels in neurons. Pflugers Arch. 457, 1161–1172 (2009).

    Article  CAS  Google Scholar 

  37. Rhodes, K.J. et al. KChIPs and Kv4 alpha subunits as integral components of A-type potassium channels in mammalian brain. J. Neurosci. 24, 7903–7915 (2004).

    Article  CAS  Google Scholar 

  38. Talley, E.M. et al. Differential distribution of three members of a gene family encoding low voltage–activated (T-type) calcium channels. J. Neurosci. 19, 1895–1911 (1999).

    Article  CAS  Google Scholar 

  39. Ebihara, S., Shirato, K., Harata, N. & Akaike, N. Gramicidin-perforated patch recording: GABA response in mammalian neurones with intact intracellular chloride. J. Physiol. (Lond.) 484, 77–86 (1995).

    Article  CAS  Google Scholar 

  40. McDonough, S.I. & Bean, B.P. Mibefradil inhibition of T-type calcium channels in cerebellar Purkinje neurons. Mol. Pharmacol. 54, 1080–1087 (1998).

    Article  CAS  Google Scholar 

  41. Hamid, J., Peloquin, J.B., Monteil, A. & Zamponi, G.W. Determinants of the differential gating properties of Cav3.1 and Cav3.3 T-type channels: a role of domain IV? Neuroscience 143, 717–728 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge J. McRory and M.L. Molineux for early contributions to protein analysis, H. Jerng and P. Pfaffinger for access to DPLP cDNA clones, and M. Kruskic and L. Chen for expert technical assistance. This work was supported by a grant from Canadian Institutes of Health Research (R.W.T. and G.W.Z.) and studentship support through an Achievers in Medical Sciences and T. Chen Fong Award (D.A.), Alberta Heritage Foundation for Medical Research (AHFMR) (W.H.M., R.R. and J.D.T.E.), Canadian Institutes of Health Research (W.H.M.), National Sciences and Engineering Research Council (R.R.), and an AHFMR Postdoctoral Fellowship (M.I.). R.W.T. is an AHFMR Scientist and G.W.Z. is an AHFMR Scientist and Canada Research Chair.

Author information

Authors and Affiliations

Authors

Contributions

R.W.T. and G.W.Z. designed the study. D.A., M.I., J.D.T.E., H.W.M., S.H. and R.R. performed the experiments and analyzed the data. D.A., H.W.M., R.W.T. and G.W.Z. wrote the manuscript.

Corresponding author

Correspondence to Ray W Turner.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1 and 2 (PDF 478 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, D., Mehaffey, W., Iftinca, M. et al. Regulation of neuronal activity by Cav3-Kv4 channel signaling complexes. Nat Neurosci 13, 333–337 (2010). https://doi.org/10.1038/nn.2493

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2493

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing