Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural requirements for the activation of vomeronasal sensory neurons by MHC peptides

Abstract

In addition to their role in the immune response, peptide ligands of major histocompatibility complex (MHC) molecules function as olfactory cues for subsets of vomeronasal sensory neurons (VSNs) in the mammalian nose. How MHC peptide diversity is recognized and encoded by these cells is unclear. We found that mouse VSNs expressing the vomeronasal receptor gene V2r1b (also known as Vmn2r26) detected MHC peptides at subpicomolar concentrations and exhibited combinatorial activation with overlapping specificities. In a given cell, peptide responsiveness was broad, but highly specific; peptides differing by a single amino-acid residue could be distinguished. Cells transcribing a V2r1b locus that has been disrupted by gene targeting no longer showed such peptide responses. Our results reveal fundamental parameters governing the response to MHC peptides by VSNs. We suggest that the peptide presentation system provided by MHC molecules co-evolves with the peptide recognition systems expressed by T cells and VSNs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: V2r1b-expressing VSNs have transient Ca2+ responses to MHC peptide ligands.
Figure 2: V2r1b-expressing VSNs have heterogeneous response profiles as a population.
Figure 3: Specificity of the peptide responses of V2r1b-expressing VSNs.
Figure 4: Dose dependency of peptide-induced Ca2+ responses imaged in individual V2r1b-expressing VSNs.
Figure 5: Concentration independence of spatial peptide activation patterns.
Figure 6: Lack of peptide responses in ΔV2r1b-GFP VSNs.
Figure 7: Distribution of anchor residues in human MHC ligands.

Similar content being viewed by others

References

  1. Davis, M.M. et al. T cells as a self-referential, sensory organ. Annu. Rev. Immunol. 25, 681–695 (2007).

    Article  CAS  Google Scholar 

  2. Cooper, M.D. & Alder, M.N. The evolution of adaptive immune systems. Cell 124, 815–822 (2006).

    Article  CAS  Google Scholar 

  3. Davis, M.M. & Bjorkman, P.J. T-cell antigen receptor genes and T-cell recognition. Nature 334, 395–402 (1988).

    CAS  Google Scholar 

  4. Eason, D.D. et al. Mechanisms of antigen receptor evolution. Semin. Immunol. 16, 215–226 (2004).

    Article  CAS  Google Scholar 

  5. Huh, G.S. et al. Functional requirement for class I MHC in CNS development and plasticity. Science 290, 2155–2159 (2000).

    Article  CAS  Google Scholar 

  6. McConnell, M.J., Huang, Y.H., Datwani, A. & Shatz, C.J. H2-Kb and H2-Db regulate cerebellar long-term depression and limit motor learning. Proc. Natl. Acad. Sci. USA 106, 6784–6789 (2009).

    Article  CAS  Google Scholar 

  7. Leinders-Zufall, T. et al. MHC class I peptides as chemosensory signals in the vomeronasal organ. Science 306, 1033–1037 (2004).

    Article  CAS  Google Scholar 

  8. He, J., Ma, L., Kim, S., Nakai, J. & Yu, C.R. Encoding gender and individual information in the mouse vomeronasal organ. Science 320, 535–538 (2008).

    Article  CAS  Google Scholar 

  9. Spehr, M. et al. Essential role of the main olfactory system in social recognition of major histocompatibility complex peptide ligands. J. Neurosci. 26, 1961–1970 (2006).

    Article  CAS  Google Scholar 

  10. Boehm, T. Quality control in self/nonself discrimination. Cell 125, 845–858 (2006).

    Article  CAS  Google Scholar 

  11. Brennan, P.A. & Zufall, F. Pheromonal communication in vertebrates. Nature 444, 308–315 (2006).

    Article  CAS  Google Scholar 

  12. Rammensee, H.G., Bachmann, J. & Stefanovic, S. MHC Ligands and Peptide Motifs, (Landes Bioscience, Georgetown, TX, 1997).

  13. Herrada, G. & Dulac, C. A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90, 763–773 (1997).

    Article  CAS  Google Scholar 

  14. Matsunami, H. & Buck, L.B. A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90, 775–784 (1997).

    Article  CAS  Google Scholar 

  15. Ryba, N.J. & Tirindelli, R. A new multigene family of putative pheromone receptors. Neuron 19, 371–379 (1997).

    Article  CAS  Google Scholar 

  16. Young, J.M. & Trask, B.J. V2R gene families degenerated in primates, dog and cow, but expanded in opossum. Trends Genet. 23, 212–215 (2007).

    Article  CAS  Google Scholar 

  17. Silvotti, L., Moiani, A., Gatti, R. & Tirindelli, R. Combinatorial co-expression of pheromone receptors, V2Rs. J. Neurochem. 103, 1753–1763 (2007).

    Article  CAS  Google Scholar 

  18. Grus, W.E. & Zhang, J. Origin of the genetic components of the vomeronasal system in the common ancestor of all extant vertebrates. Mol. Biol. Evol. 26, 407–419 (2009).

    Article  CAS  Google Scholar 

  19. Del Punta, K., Puche, A., Adams, N.C., Rodriguez, I. & Mombaerts, P. A divergent pattern of sensory axonal projections is rendered convergent by second-order neurons in the accessory olfactory bulb. Neuron 35, 1057–1066 (2002).

    Article  CAS  Google Scholar 

  20. Leinders-Zufall, T. et al. Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature 405, 792–796 (2000).

    Article  CAS  Google Scholar 

  21. Spehr, J. et al. Ca2+-calmodulin feedback mediates sensory adaptation and inhibits pheromone-sensitive ion channels in the vomeronasal organ. J. Neurosci. 29, 2125–2135 (2009).

    Article  CAS  Google Scholar 

  22. Ukhanov, K., Leinders-Zufall, T. & Zufall, F. Patch-clamp analysis of gene-targeted vomeronasal neurons expressing a defined V1r or V2r receptor: ionic mechanisms underlying persistent firing. J. Neurophysiol. 98, 2357–2369 (2007).

    Article  CAS  Google Scholar 

  23. Ishii, T. & Mombaerts, P. Expression of nonclassical class I major histocompatibility genes defines a tripartite organization of the mouse vomeronasal system. J. Neurosci. 28, 2332–2341 (2008).

    Article  CAS  Google Scholar 

  24. Lucas, P., Ukhanov, K., Leinders-Zufall, T. & Zufall, F. A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: Mechanism of pheromone transduction. Neuron 40, 551–561 (2003).

    Article  CAS  Google Scholar 

  25. Boehm, T. & Zufall, F. MHC peptides and the sensory evaluation of genotype. Trends Neurosci. 29, 100–107 (2006).

    Article  CAS  Google Scholar 

  26. Bozza, T., Feinstein, P., Zheng, C. & Mombaerts, P. Odorant receptor expression defines functional units in the mouse olfactory system. J. Neurosci. 22, 3033–3043 (2002).

    Article  CAS  Google Scholar 

  27. Feinstein, P., Bozza, T., Rodriguez, I., Vassalli, A. & Mombaerts, P. Axon guidance of mouse olfactory sensory neurons by odorant receptors and the beta2 adrenergic receptor. Cell 117, 833–846 (2004).

    Article  CAS  Google Scholar 

  28. Grosmaitre, X., Vassalli, A., Mombaerts, P., Shepherd, G.M. & Ma, M. Odorant responses of olfactory sensory neurons expressing the odorant receptor MOR23: a patch clamp analysis in gene-targeted mice. Proc. Natl. Acad. Sci. USA 103, 1970–1975 (2006).

    Article  CAS  Google Scholar 

  29. Mombaerts, P. Genes and ligands for odorant, vomeronasal and taste receptors. Nat. Rev. Neurosci. 5, 263–278 (2004).

    Article  CAS  Google Scholar 

  30. Boschat, C. et al. Pheromone detection mediated by a V1r vomeronasal receptor. Nat. Neurosci. 5, 1261–1262 (2002).

    Article  CAS  Google Scholar 

  31. Malnic, B., Hirono, J., Sato, T. & Buck, L.B. Combinatorial receptor codes for odors. Cell 96, 713–723 (1999).

    Article  CAS  Google Scholar 

  32. Firestein, S. How the olfactory system makes sense of scents. Nature 413, 211–218 (2001).

    Article  CAS  Google Scholar 

  33. Luo, M. & Katz, L.C. Encoding pheromonal signals in the mammalian vomeronasal system. Curr. Opin. Neurobiol. 14, 428–434 (2004).

    Article  CAS  Google Scholar 

  34. Chandrashekar, J., Hoon, M.A., Ryba, N.J. & Zuker, C.S. The receptors and cells for mammalian taste. Nature 444, 288–294 (2006).

    Article  CAS  Google Scholar 

  35. Slev, P.R., Nelson, A.C. & Potts, W.K. Sensory neurons with MHC-like peptide binding properties: disease consequences. Curr. Opin. Immunol. 18, 608–616 (2006).

    Article  CAS  Google Scholar 

  36. Mouritsen, S., Meldal, M., Werdelin, O., Hansen, A.S. & Buus, S. MHC molecules protect T cell epitopes against proteolytic destruction. J. Immunol. 149, 1987–1993 (1992).

    CAS  PubMed  Google Scholar 

  37. Milinski, M. The major histocompatibility complex, sexual selection, and mate choice. Annu. Rev. Ecol. Evol. Syst. 37, 159–186 (2006).

    Article  Google Scholar 

  38. Marrack, P., Scott-Browne, J.P., Dai, S., Gapin, L. & Kappler, J.W. Evolutionarily conserved amino acids that control TCR-MHC interaction. Annu. Rev. Immunol. 26, 171–203 (2008).

    Article  CAS  Google Scholar 

  39. Garcia, K.C., Adams, J.J., Feng, D. & Ely, L.K. The molecular basis of TCR germline bias for MHC is surprisingly simple. Nat. Immunol. 10, 143–147 (2009).

    Article  CAS  Google Scholar 

  40. Krogsgaard, M., Juang, J. & Davis, M.M. A role for “self” in T-cell activation. Semin. Immunol. 19, 236–244 (2007).

    Article  CAS  Google Scholar 

  41. Wucherpfennig, K.W. The structural interactions between T cell receptors and MHC-peptide complexes place physical limits on self-nonself discrimination. Curr. Top. Microbiol. Immunol. 296, 19–37 (2005).

    CAS  PubMed  Google Scholar 

  42. Padovan, E. et al. Expression of two T cell receptor alpha chains: dual receptor T cells. Science 262, 422–424 (1993).

    Article  CAS  Google Scholar 

  43. Mombaerts, P. et al. Visualizing an olfactory sensory map. Cell 87, 675–686 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Konzmann for excellent technical assistance, R. Escher for peptide synthesis, K. Del Punta for a backbone plasmid of the gene targeting vector, W. Tang for blastocyst injections of ES cells and B. Bufe for comments and discussion. This work was supported by the Volkswagen Foundation (T.L.-Z.), Deutsche Forschungsgemeinschaft grants Sonderforschungsbereich 530 (F.Z.) and Schwerpunktprogramm 1392 (F.Z. and P.M.), the Max Planck Society (T.I., P.M. and T.B.), and the US National Institutes of Health (F.Z. and P.M.).

Author information

Authors and Affiliations

Authors

Contributions

T.L.-Z., T.I., P.M., F.Z. and T.B. designed the study. T.L.-Z. and T.I. carried out the experiments. T.L.-Z., T.I., P.M., F.Z. and T.B. analyzed the data. T.L.-Z., T.I., P.M., F.Z. and T.B. contributed reagents and analytic tools. T.L.-Z., P.M., F.Z. and T.B. wrote the paper.

Corresponding authors

Correspondence to Frank Zufall or Thomas Boehm.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Tables 1–3 (PDF 3752 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leinders-Zufall, T., Ishii, T., Mombaerts, P. et al. Structural requirements for the activation of vomeronasal sensory neurons by MHC peptides. Nat Neurosci 12, 1551–1558 (2009). https://doi.org/10.1038/nn.2452

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2452

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing