Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia

Abstract

Cardiac arrest victims may experience transient brain hypoperfusion leading to delayed death of hippocampal CA1 neurons and cognitive impairment. We prevented this in adult rats by inhibiting the expression of transient receptor potential melastatin 7 (TRPM7), a transient receptor potential channel that is essential for embryonic development, is necessary for cell survival and trace ion homeostasis in vitro, and whose global deletion in mice is lethal. TRPM7 was suppressed in CA1 neurons by intrahippocampal injections of viral vectors bearing shRNA specific for TRPM7. This had no ill effect on animal survival, neuronal and dendritic morphology, neuronal excitability, or synaptic plasticity, as exemplified by robust long-term potentiation (LTP). However, TRPM7 suppression made neurons resistant to ischemic death after brain ischemia and preserved neuronal morphology and function. Also, it prevented ischemia-induced deficits in LTP and preserved performance in fear-associated and spatial-navigational memory tasks. Thus, regional suppression of TRPM7 is feasible, well tolerated and inhibits delayed neuronal death in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Suppression of TRPM7 expression in adult rat hippocampal neurons.
Figure 2: Suppression of TRPM7 is well tolerated in vivo.
Figure 3: TRPM7 suppression in vivo imparts resilience to DND.
Figure 4: Persistent resilience of TRPM7-deficient hippocampi to ischemia 7 d post 4VO.
Figure 5: Persistence of function in surviving TRPM7-deficient CA1 neurons 30 d after ischemia.
Figure 6: TRPM7 deficiency prevents loss of memory functions in rats subjected to global ischemia.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Hausenloy, D.J. & Scorrano, L. Targeting cell death. Clin. Pharmacol. Ther. 82, 370–373 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Volpe, B.T. & Petito, C.K. Dementia with bilateral medial temporal lobe ischemia. Neurology 35, 1793–1797 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Petito, C.K., Feldmann, E., Pulsinelli, W.A. & Plum, F. Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology 37, 1281–1286 (1987).

    Article  CAS  PubMed  Google Scholar 

  4. Bennett, M.V. et al. The GluR2 hypothesis: Ca2+-permeable AMPA receptors in delayed neurodegeneration. Cold Spring Harb. Symp. Quant. Biol. 61, 373–384 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Volpe, B.T., Pulsinelli, W.A., Tribuna, J. & Davis, H.P. Behavioral performance of rats following transient forebrain ischemia. Stroke 15, 558–562 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Block, F. Global ischemia and behavioral deficits. Prog. Neurobiol. 58, 279–295 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Lipton, P. Ischemic cell death in brain neurons. Physiol. Rev. 79, 1431–1568 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Besancon, E., Guo, S., Lok, J., Tymianski, M. & Lo, E.H. Beyond NMDA and AMPA glutamate receptors: emerging mechanisms for ionic imbalance and cell death in stroke. Trends Pharmacol. Sci. 29, 268–275 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Aarts, M. et al. A key role for TRPM7 channels in anoxic neuronal death. Cell 115, 863–877 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Montell, C., Birnbaumer, L. & Flockerzi, V. The TRP channels, a remarkably functional family. Cell 108, 595–598 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Monteilh-Zoller, M.K. et al. TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J. Gen. Physiol. 121, 49–60 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nadler, M.J. et al. LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 411, 590–595 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Schmitz, C. et al. Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 114, 191–200 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Jin, J. et al. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science 322, 756–760 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Siesjo, B.K., Katsura, K. & Tibor, K. Acidosis related brain damage. in Advances in Neurology: Cellular and Molecular Mechanisms of Ischemic Brain Damage (eds. Siesjo, B.K. & Wieloch, T.) (Raven Press, New York, 1994).

    Google Scholar 

  16. Silver, I.A. & Erecinska, M. Intracellular and exctracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo. J. Gen. Physiol. 95, 837–866 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Lin, M.C. et al. Microdialysis analyzer and flame atomic absorption spectrometry in the determination of blood glucose, lactate and magnesium in gerbils subjected to cerebral ischemia/reperfusion. J. Am. Coll. Nutr. 23, 556S–560S (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Runnels, L.W., Yue, L. & Clapham, D.E. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291, 1043–1047 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Kozak, J.A., Kerschbaum, H.H. & Cahalan, M.D. Distinct properties of CRAC and MIC channels in RBL cells. J. Gen. Physiol. 120, 221–235 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wei, W.L. et al. TRPM7 channels in hippocampal neurons detect levels of extracellular divalent cations. Proc. Natl. Acad. Sci. USA 104, 16323–16328 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaneko, S. et al. A critical role of TRPM2 in neuronal cell death by hydrogen peroxide. J. Pharmacol. Sci. 101, 66–76 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Bridge, A.J., Pebernard, S., Ducraux, A., Nicoulaz, A.L. & Iggo, R. Induction of an interferon response by RNAi vectors in mammalian cells. Nat. Genet. 34, 263–264 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Sledz, C.A., Holko, M., de Veer, M.J., Silverman, R.H. & Williams, B.R. Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol. 5, 834–839 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Schmitz, C. et al. The channel kinases TRPM6 and TRPM7 are functionally nonredundant. J. Biol. Chem. 280, 37763–37771 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Xiong, Z.G., Chu, X.P. & MacDonald, J.F. Effect of lamotrigine on the Ca2+-sensing cation current in cultured hippocampal neurons. J. Neurophysiol. 86, 2520–2526 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Xiong, Z., Lu, W. & MacDonald, J.F. Extracellular calcium sensed by a novel cation channel in hippocampal neurons. Proc. Natl. Acad. Sci. USA 94, 7012–7017 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pulsinelli, W.A. & Brierly, J.B. A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10, 267–272 (1979).

    Article  CAS  PubMed  Google Scholar 

  28. Pulsinelli, W.A., Brierly, J.B. & Plum, F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann. Neurol. 11, 491–498 (1982).

    Article  CAS  PubMed  Google Scholar 

  29. Saito, A. et al. Oxidative stress and neuronal death/survival signaling in cerebral ischemia. Mol. Neurobiol. 31, 105–116 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Corish, P. & Tyler-Smith, C. Attenuation of green fluorescent protein half-life in mammalian cells. Protein Eng. 12, 1035–1040 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Kumar, R. et al. Brain ischemia and reperfusion activates the eukaryotic initiation factor 2α kinase, PERK. J. Neurochem. 77, 1418–1421 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Stoll, G., Jander, S. & Schroeter, M. Inflammation and glial responses in ischemic brain lesions. Prog. Neurobiol. 56, 149–171 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Gavrieli, Y., Sherman, Y. & Ben-Sasson, S.A. Indentification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Ji, J. & Maren, S. Hippocampal involvement in contextual modulation of fear extinction. Hippocampus 17, 749–758 (2007).

    Article  PubMed  Google Scholar 

  35. Whitlock, J.R., Heynen, A.J., Shuler, M.G. & Bear, M.F. Learning induces long-term potentiation in the hippocampus. Science 313, 1093–1097 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Lisman, J., Schulman, H. & Cline, H. The molecular basis of CaMKII function in synaptic and behavioral memory. Nat. Rev. Neurosci. 3, 175–190 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Fanselow, M.S. Conditioned and unconditional components of post-shock freezing. Pavlov. J. Biol. Sci. 15, 177–182 (1980).

    CAS  PubMed  Google Scholar 

  38. Morris, R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11, 47–60 (1984).

    Article  CAS  PubMed  Google Scholar 

  39. Morris, G.F. et al. Failure of the competitive N-methyl-D-aspartate antagonist Selfotel (CGS 19755) in the treatment of severe head injury: results of two phase III clinical trials. The selfotel investigators. J. Neurosurg. 91, 737–743 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Davis, S.M., Albers, G.W., Diener, H.C., Lees, K.R. & Norris, J. Termination of acute stroke studies involving selfotel treatment. ASSIST steering committed. Lancet 349, 32 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Xiong, Z.G. et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118, 687–698 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Thompson, R.J., Zhou, N. & MacVicar, B.A. Ischemia opens neuronal gap junction hemichannels. Science 312, 924–927 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Lawlor, P.A. et al. Novel rat Alzheimer's disease models based on AAV-mediated gene transfer to selectively increase hippocampal Aβ levels. Mol. Neurodegener. 2, 11 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Academic Press, San Diego, 1998).

    Google Scholar 

  45. Mastakov, M.Y., Baer, K., Xu, R., Fitzsimons, H. & During, M.J. Combined injection of rAAV with mannitol enhances gene expression in the rat brain. Mol. Ther. 3, 225–232 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Sun, H.S., Feng, Z.P., Miki, T., Seino, S. & French, R.J. Enhanced neuronal damage after ischemic insults in mice lacking Kir6.2-containing ATP-sensitive K+ channels. J. Neurophysiol. 95, 2590–2601 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Mullen, R.J., Buck, C.R. & Smith, A.M. NeuN, a neuronal specific nuclear protein in vertebrates. Development 116, 201–211 (1992).

    CAS  PubMed  Google Scholar 

  48. Wang, L.Y. & MacDonald, J.F. Modulation by magnesium of the affinity of NMDA receptors for glycine in murine hippocampal neurones. J. Physiol. (Lond.) 486, 83–95 (1995).

    Article  CAS  Google Scholar 

  49. Cheng, V.Y. et al. α5GABAA receptors mediate the amnestic, but not sedative-hypnotic, effects of the general anesthetic etomidate. J. Neurosci. 26, 3713–3720 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Aarts and W. Czerwinski for technical information, J.C. Roder for advice on MWM testing, and A. Fleig, C. Montell, A. Scharenberg and E. Lo for a critical review of the manuscript. This work was supported by grants from the Canadian Institute of Health Research (MOP68939 and MOP89720 to M.T. and MOP15514 to J.F.M.), the US National Institutes of Health (NS048956 to M.T.), the Canadian Stroke Networks (M.T., J.F.M. and M.F.J.) and the Krembil Seed fund (M.T.). H.-S.S. is a recipient of Postdoctoral Fellowship Awards from the Heart and Stroke Foundation of Canada Focus on Stroke Training Initiative Program.

Author information

Authors and Affiliations

Authors

Contributions

H.-S.S. carried out the stereotactic rAAV infections, sectioning, immunochemistry, imaging, cell counts, laser dissection microcapture and PCR. K.J. and T.E.G. designed and manufactured the rAAV vectors, M.F.J. and J.F.M. performed the electrophysiology experiments, L.T. carried out the 4VO and histology procedures, Y.M. generated the antibodies to TRPM7, S.K. and H.C. performed the immunoblots, M.J. carried out the TUNEL cell counts, and J.P.F., M.J., H.C. and H.-S.S. performed the OGD experiments. L.J.M. and B.A.O. carried out the neurobehavioral evaluations. M.T. and H.-S.S. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Michael Tymianski.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11, Supplementary Table 1 and Supplementary Notes (PDF 6176 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, HS., Jackson, M., Martin, L. et al. Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nat Neurosci 12, 1300–1307 (2009). https://doi.org/10.1038/nn.2395

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2395

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing