Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Small voltage changes at nerve terminals travel up axons to affect action potential initiation

Abstract

Nerve terminals are generally considered to be the destination points for electrical signals, which propagate unidirectionally from the soma to nerve terminals. We found that small hyperpolarizations or depolarizations (10 mV) generated under physiological conditions in rat nerve terminals backpropagated up the axon (400–800 μm) and changed the threshold for initiating action potentials and thus firing patterns. These results suggest a mechanism for information processing in neurons and neuronal circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Afterhyperpolarization at the calyx reduces the ProbAP at the axon.
Figure 2: Afterdepolarization at the calyx increase axonal ProbAP.

Similar content being viewed by others

References

  1. Rodriguez-Contreras, A., de Lange, R.P., Lucassen, P.J. & Borst, J.G. J. Comp. Neurol. 496, 214–228 (2006).

    Article  Google Scholar 

  2. Kim, J.H., Sizov, I., Dobretsov, M. & von Gersdorff, H. Nat. Neurosci. 10, 196–205 (2007).

    Article  CAS  Google Scholar 

  3. Borst, J.G., Helmchen, F. & Sakmann, B. J. Physiol. (Lond.) 489, 825–840 (1995).

    Article  CAS  Google Scholar 

  4. Shu, Y., Hasenstaub, A., Duque, A., Yu, Y. & McCormick, D.A. Nature 441, 761–765 (2006).

    Article  CAS  Google Scholar 

  5. Alle, H. & Geiger, J.R. Science 311, 1290–1293 (2006).

    Article  CAS  Google Scholar 

  6. Stepanyants, A. & Chklovskii, D.B. Trends Neurosci. 28, 387–394 (2005).

    Article  CAS  Google Scholar 

  7. Markram, H., Lubke, J., Frotscher, M., Roth, A. & Sakmann, B. J. Physiol. (Lond.) 500, 409–440 (1997).

    Article  CAS  Google Scholar 

  8. Geiger, J.R. & Jonas, P. Neuron 28, 927–939 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Bielefeldt, K. & Jackson, M.B. J. Neurophysiol. 70, 284–298 (1993).

    Article  CAS  Google Scholar 

  10. Engelman, H.S. & MacDermott, A.B. Nat. Rev. Neurosci. 5, 135–145 (2004).

    Article  CAS  Google Scholar 

  11. Turecek, R. & Trussell, L.O. Nature 411, 587–590 (2001).

    Article  CAS  Google Scholar 

  12. Scott, R., Ruiz, A., Henneberger, C., Kullmann, D.M. & Rusakov, D.A. J. Neurosci. 28, 7765–7773 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Stevens, C.F. & Wang, Y. Neuron 14, 795–802 (1995).

    Article  CAS  Google Scholar 

  14. Malenka, R.C. & Bear, M.F. Neuron 44, 5–21 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Zucker, R.S. & Regehr, W.G. Annu. Rev. Physiol. 64, 355–405 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Diamond, A. Elhamdani, B. McNeil, D. Robinson and J. Xu for insightful comments. This work was supported by the National Institute of Neurological Disorders and Stroke Intramural Program and a K22 Award to K.P. (K22NS051401).

Author information

Authors and Affiliations

Authors

Contributions

K.P. designed, performed and analyzed the experiments and wrote the manuscript. L.-G.W. supervised the project and wrote the manuscript.

Note: Supplementary information is available on the Nature Neuroscience website.

Corresponding authors

Correspondence to Kenneth Paradiso or Ling-Gang Wu.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Table 1, Supplementary Methods and Supplementary Results (PDF 198 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paradiso, K., Wu, LG. Small voltage changes at nerve terminals travel up axons to affect action potential initiation. Nat Neurosci 12, 541–543 (2009). https://doi.org/10.1038/nn.2301

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2301

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing