Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oxidation of a potassium channel causes progressive sensory function loss during aging

Abstract

Potassium channels are key regulators of neuronal excitability. Here we show that oxidation of the K+ channel KVS-1 during aging causes sensory function loss in Caenorhabditis elegans and that protection of this channel from oxidation preserves neuronal function. Chemotaxis, a function controlled by KVS-1, was significantly impaired in worms exposed to oxidizing agents, but only moderately affected in worms harboring an oxidation-resistant KVS-1 mutant (C113S). In aging C113S transgenic worms, the effects of free radical accumulation were significantly attenuated compared to those in wild type. Electrophysiological analyses showed that both reactive oxygen species (ROS) accumulation during aging and acute exposure to oxidizing agents acted primarily to alter the excitability of the neurons that mediate chemotaxis. Together, these findings establish a pivotal role for ROS-mediated oxidation of voltage-gated K+ channels in sensorial decline during aging in invertebrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: KVS-1 channels expressed in mammalian cells are susceptible to redox modulation.
Figure 2: Cys113 mediates redox modulation of KVS-1.
Figure 3: Protected chemosensory function in C113S worms.
Figure 4: Chemosensory loss is lessened in C113S worms during aging.
Figure 5: KVS-1 conducts the A-type current in ASER neurons.
Figure 6: Native KVS-1 currents are modified by oxidizing agents.
Figure 7: Native KVS-1 currents are modified by endogenous ROS.

Similar content being viewed by others

References

  1. Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298–300 (1956).

    Article  CAS  PubMed  Google Scholar 

  2. Annunziato, L. et al. Modulation of ion channels by reactive oxygen and nitrogen species: a pathophysiological role in brain aging? Neurobiol. Aging 23, 819–834 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Ruppersberg, J.P. et al. Regulation of fast inactivation of cloned mammalian IK(A) channels by cysteine oxidation. Nature 352, 711–714 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Duprat, F., Girard, C., Jarretou, G. & Lazdunski, M. Pancreatic two P domain K+ channels TALK-1 and TALK-2 are activated by nitric oxide and reactive oxygen species. J. Physiol. (Lond.) 562, 235–244 (2005).

    Article  CAS  Google Scholar 

  5. Tang, X.D., Garcia, M.L., Heinemann, S.H. & Hoshi, T. Reactive oxygen species impair Slo1 BK channel function by altering cysteine-mediated calcium sensing. Nat. Struct. Mol. Biol. 11, 171–178 (2004).

    Article  PubMed  Google Scholar 

  6. Zeidner, G., Sadja, R. & Reuveny, E. Redox-dependent gating of G protein-coupled inwardly rectifying K+ channels. J. Biol. Chem. 276, 35564–35570 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Avshalumov, M.V. & Rice, M.E. Activation of ATP-sensitive K+ (K(ATP)) channels by H2O2 underlies glutamate-dependent inhibition of striatal dopamine release. Proc. Natl. Acad. Sci. USA 100, 11729–11734 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gamper, N. et al. Oxidative modification of M-type K(+) channels as a mechanism of cytoprotective neuronal silencing. EMBO J. 25, 4996–5004 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kenyon, C. (ed.) Environmental factors and gene activities that influence life span. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1997).

    Google Scholar 

  10. Bianchi, L., Kwok, S.M., Driscoll, M. & Sesti, F. A potassium channel-MiRP complex controls neurosensory function in Caenorhabditis elegans. J. Biol. Chem. 278, 12415–12424 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Cai, S.Q. & Sesti, F. A new mode of regulation of N-type inactivation in a Caenorhabditis elegans voltage-gated potassium channel. J. Biol. Chem. 282, 18597–18601 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Hoshi, T., Zagotta, W.N. & Aldrich, R.W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250, 533–538 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Bargmann, C. & Mori, I. in C. elegans II (eds. Riddle, D.L., Blumenthal, B.T, Meyer, B.J. & Priess, J.R.) 717–737 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 1997).

    Google Scholar 

  14. Goodman, M.B., Hall, D.H., Avery, L. & Lockery, S.R. Active currents regulate sensitivity and dynamic range in C. elegans neurons. Neuron 20, 763–772 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu, S., Avery, L., Baude, E. & Garbers, D. Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. Proc. Natl. Acad. Sci. USA 94, 3384–3387 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim, K. & Li, C. Expression and regulation of an FMRFamide related neuropeptide gene family in Caenorhabditis elegans. J. Comp. Neurol. 475, 540–550 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Lee, R.Y., Sawin, E.R., Chalfie, M., Horvitz, H.R. & Avery, L. EAT-4, a homolog of a mammalian sodium-dependent inorganic phosphate cotransporter, is necessary for glutamatergic neurotransmission in Caenorhabditis elegans. J. Neurosci. 19, 159–167 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miller, K.G. et al. A genetic selection for Caenorhabditis elegans synaptic transmission mutants. Proc. Natl. Acad. Sci. USA 93, 12593–12598 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ramot, D., Johnson, B.E., Berry, T.L. Jr., Carnell, L. & Goodman, M.B. The Parallel Worm Tracker: a platform for measuring average speed and drug-induced paralysis in nematodes. PLoS ONE 3, e2208 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pierce-Shimomura, J.T., Morse, T.M. & Lockery, S.R. The fundamental role of pirouettes in Caenorhabditis elegans chemotaxis. J. Neurosci. 19, 9557–9569 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Suzuki, H. et al. Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis. Nature 454, 114–118 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Klass, M.R. A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mech. Ageing Dev. 22, 279–286 (1983).

    Article  CAS  PubMed  Google Scholar 

  23. Lithgow, G.J., White, T.M., Melov, S. & Johnson, T.E. Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl. Acad. Sci. USA 92, 7540–7544 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vanfleteren, J.R. Oxidative stress and ageing in Caenorhabditis elegans. Biochem. J. 292, 605–608 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Larsen, P.L. Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 90, 8905–8909 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Herndon, L.A. et al. Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419, 808–814 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Darr, D. & Fridovich, I. Adaptation to oxidative stress in young, but not in mature or old, Caenorhabditis elegans. Free Radic. Biol. Med. 18, 195–201 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Okabe, T., Hamaguchi, K., Inafuku, T. & Hara, M. Aging and superoxide dismutase activity in cerebrospinal fluid. J. Neurol. Sci. 141, 100–104 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Christensen, M. et al. A primary culture system for functional analysis of C. elegans neurons and muscle cells. Neuron 33, 503–514 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, Y. et al. Identification of genes expressed in C. elegans touch receptor neurons. Nature 418, 331–335 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Suzuki, H. et al. In vivo imaging of C. elegans mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch sensation. Neuron 39, 1005–1017 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Bargmann, C.I. & Horvitz, H.R. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7, 729–742 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Park, K.H., Hernandez, L., Cai, S.Q., Wang, Y. & Sesti, F. A Family of K+ Channel Ancillary Subunits Regulate Taste Sensitivity in Caenorhabditis elegans. J. Biol. Chem. 280, 21893–21899 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Rojas, P. et al. Cumulative activation of voltage-dependent KVS-1 potassium channels. J. Neurosci. 28, 757–765 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Santi, C.M. et al. Dissection of K+ currents in Caenorhabditis elegans muscle cells by genetics and RNA interference. Proc. Natl. Acad. Sci. USA 100, 14391–14396 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ramot, D., MacInnis, B.L. & Goodman, M.B. Bidirectional temperature-sensing by a single thermosensory neuron in C. elegans. Nat. Neurosci. 11, 908–915 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Richmond, J.E. Electrophysiological recordings from the neuromuscular junction of C. elegans. in WormBook (ed. The C. elegans Research Community) 1–8 doi/10.1895/wormbook.1.112.1 (6 October 2006).

    Google Scholar 

  38. Jospin, M., Mariol, M., Segalat, L. & Allard, B. Characterization of K+ currents using an in situ patch-clamp technique in body wall muscle cells from Caenorhabditis elegans. J. Physiol. 544, 373–384 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Richmond, J.E. & Jorgensen, E.M. One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nat. Neurosci. 2, 791–797 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mellem, J.E., Brockie, P.J., Madsen, D.M. & Maricq, A.V. Action potentials contribute to neuronal signaling in C. elegans. Nat. Neurosci. 11, 865–867 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ciorba, M.A., Heinemann, S.H., Weissbach, H., Brot, N. & Hoshi, T. Modulation of potassium channel function by methionine oxidation and reduction. Proc. Natl. Acad. Sci. USA 94, 9932–9937 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Alshuaib, W.B. et al. Reduced potassium currents in old rat CA1 hippocampal neurons. J. Neurosci. Res. 63, 176–184 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Yu, S.P. et al. Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278, 114–117 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Pal, S., Hartnett, K.A., Nerbonne, J.M., Levitan, E.S. & Aizenman, E. Mediation of neuronal apoptosis by Kv2.1-encoded potassium channels. J. Neurosci. 23, 4798–4802 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Serrano, F. & Klann, E. Reactive oxygen species and synaptic plasticity in the aging hippocampus. Ageing Res. Rev. 3, 431–443 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Behl, C. Alzheimer's disease and oxidative stress: implications for novel therapeutic approaches. Prog. Neurobiol. 57, 301–323 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Bo, L. et al. Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann. Neurol. 36, 778–786 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Mitani (Tokyo Women's Medical University School of Medicine) for the tm2034 strain, O. Hobert (Columbia University) for the Pgcy-5::GFP construct and the C. elegans Knockout Consortium for the TJ1052 strain. We thank A. Jauregui and M. Barr for their help with the average speed measurements, and J. Lenard, G. Abbott and L. Runnels for critical reading of the manuscript. This work was supported by a US National Institutes of Health grant (R01GM68581) to F.S.

Author information

Authors and Affiliations

Authors

Contributions

S.-Q.C. and F.S. designed research, performed research and analyzed data. F.S. wrote the manuscript.

Corresponding author

Correspondence to Federico Sesti.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, Supplementary Tables 1 and 2, and Supplementary Methods (PDF 525 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, SQ., Sesti, F. Oxidation of a potassium channel causes progressive sensory function loss during aging. Nat Neurosci 12, 611–617 (2009). https://doi.org/10.1038/nn.2291

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2291

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing