Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Trans-synaptic adhesion between NGL-3 and LAR regulates the formation of excitatory synapses

Abstract

Synaptic adhesion molecules regulate multiple steps of synapse formation and maturation. The great diversity of neuronal synapses predicts the presence of a large number of adhesion molecules that control synapse formation through trans-synaptic and heterophilic adhesion. We identified a previously unknown trans-synaptic interaction between netrin-G ligand–3 (NGL-3), a postsynaptic density (PSD) 95–interacting postsynaptic adhesion molecule, and leukocyte common antigen-related (LAR), a receptor protein tyrosine phosphatase. NGL-3 and LAR expressed in heterologous cells induced pre- and postsynaptic differentiation in contacting axons and dendrites of cocultured rat hippocampal neurons, respectively. Neuronal overexpression of NGL-3 increased presynaptic contacts on dendrites of transfected neurons. Direct aggregation of NGL-3 on dendrites induced coclustering of excitatory postsynaptic proteins. Knockdown of NGL-3 reduced the number and function of excitatory synapses. Competitive inhibition by soluble LAR reduced NGL-3–induced presynaptic differentiation. These results suggest that the trans-synaptic adhesion between NGL-3 and LAR regulates excitatory synapse formation in a bidirectional manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NGL-3 expressed in non-neural cells induces functional presynaptic differentiation in contacting axons.
Figure 2: Expression patterns of NGL-3 proteins in rat brain.
Figure 3: Overexpression of NGL-3 in cultured neurons increases excitatory, but not inhibitory, presynaptic contacts on dendrites of transfected neurons.
Figure 4: Direct aggregation of NGL-3 on the surface of dendrites induces coclustering of excitatory postsynaptic proteins.
Figure 5: Knockdown of NGL-3 leads to decreases in the number and function of excitatory synapses.
Figure 6: NGL-3 interacts with LAR.
Figure 7: Soluble LAR reduces NGL-3–induced presynaptic differentiation.
Figure 8: LAR expressed in non-neural cells induces excitatory postsynaptic differentiation in contacting dendrites.

Similar content being viewed by others

References

  1. Yamagata, M., Sanes, J.R. & Weiner, J.A. Synaptic adhesion molecules. Curr. Opin. Cell Biol. 15, 621–632 (2003).

    Article  CAS  Google Scholar 

  2. Dalva, M.B., McClelland, A.C. & Kayser, M.S. Cell adhesion molecules: signaling functions at the synapse. Nat. Rev. Neurosci. 8, 206–220 (2007).

    Article  CAS  Google Scholar 

  3. Washbourne, P. et al. Cell adhesion molecules in synapse formation. J. Neurosci. 24, 9244–9249 (2004).

    Article  CAS  Google Scholar 

  4. Akins, M.R. & Biederer, T. Cell-cell interactions in synaptogenesis. Curr. Opin. Neurobiol. 16, 83–89 (2006).

    Article  CAS  Google Scholar 

  5. Craig, A.M. & Kang, Y. Neurexin-neuroligin signaling in synapse development. Curr. Opin. Neurobiol. 17, 43–52 (2007).

    Article  CAS  Google Scholar 

  6. McAllister, A.K. Dynamic aspects of CNS synapse formation. Annu. Rev. Neurosci. 30, 425–450 (2007).

    Article  CAS  Google Scholar 

  7. Ichtchenko, K. et al. Neuroligin 1: a splice site–specific ligand for beta-neurexins. Cell 81, 435–443 (1995).

    Article  CAS  Google Scholar 

  8. Scheiffele, P., Fan, J., Choih, J., Fetter, R. & Serafini, T. Neuroligin expressed in non-neuronal cells triggers presynaptic development in contacting axons. Cell 101, 657–669 (2000).

    Article  CAS  Google Scholar 

  9. Graf, E.R., Zhang, X., Jin, S.X., Linhoff, M.W. & Craig, A.M. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119, 1013–1026 (2004).

    Article  CAS  Google Scholar 

  10. Biederer, T. et al. SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297, 1525–1531 (2002).

    Article  CAS  Google Scholar 

  11. Fogel, A.I. et al. SynCAMs organize synapses through heterophilic adhesion. J. Neurosci. 27, 12516–12530 (2007).

    Article  CAS  Google Scholar 

  12. Lin, J.C., Ho, W.H., Gurney, A. & Rosenthal, A. The netrin-G1 ligand NGL-1 promotes the outgrowth of thalamocortical axons. Nat. Neurosci. 6, 1270–1276 (2003).

    Article  CAS  Google Scholar 

  13. Kim, S. et al. NGL family PSD-95–interacting adhesion molecules regulate excitatory synapse formation. Nat. Neurosci. 9, 1294–1301 (2006).

    Article  CAS  Google Scholar 

  14. Kayser, M.S., McClelland, A.C., Hughes, E.G. & Dalva, M.B. Intracellular and trans-synaptic regulation of glutamatergic synaptogenesis by EphB receptors. J. Neurosci. 26, 12152–12164 (2006).

    Article  CAS  Google Scholar 

  15. Boucard, A.A., Chubykin, A.A., Comoletti, D., Taylor, P. & Sudhof, T.C. A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to alpha- and beta-neurexins. Neuron 48, 229–236 (2005).

    Article  CAS  Google Scholar 

  16. Chih, B., Gollan, L. & Scheiffele, P. Alternative splicing controls selective trans-synaptic interactions of the neuroligin-neurexin complex. Neuron 51, 171–178 (2006).

    Article  CAS  Google Scholar 

  17. Graf, E.R., Kang, Y., Hauner, A.M. & Craig, A.M. Structure function and splice site analysis of the synaptogenic activity of the neurexin-1 beta LNS domain. J. Neurosci. 26, 4256–4265 (2006).

    Article  CAS  Google Scholar 

  18. Irie, M. et al. Binding of neuroligins to PSD-95. Science 277, 1511–1515 (1997).

    Article  CAS  Google Scholar 

  19. Tabuchi, K. et al. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 318, 71–76 (2007).

    Article  CAS  Google Scholar 

  20. Jamain, S. et al. Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proc. Natl. Acad. Sci. USA 105, 1710–1715 (2008).

    Article  CAS  Google Scholar 

  21. Nakashiba, T. et al. Netrin-G1: a novel glycosyl phosphatidylinositol–linked mammalian netrin that is functionally divergent from classical netrins. J. Neurosci. 20, 6540–6550 (2000).

    Article  CAS  Google Scholar 

  22. Nakashiba, T., Nishimura, S., Ikeda, T. & Itohara, S. Complementary expression and neurite outgrowth activity of netrin-G subfamily members. Mech. Dev. 111, 47–60 (2002).

    Article  CAS  Google Scholar 

  23. Yin, Y., Miner, J.H. & Sanes, J.R. Laminets: laminin- and netrin-related genes expressed in distinct neuronal subsets. Mol. Cell. Neurosci. 19, 344–358 (2002).

    Article  CAS  Google Scholar 

  24. Nishimura-Akiyoshi, S., Niimi, K., Nakashiba, T. & Itohara, S. Axonal netrin-Gs transneuronally determine lamina-specific subdendritic segments. Proc. Natl. Acad. Sci. USA 104, 14801–14806 (2007).

    Article  Google Scholar 

  25. Zhang, W. et al. Netrin-G2 and netrin-G2 ligand are both required for normal auditory responsiveness. Genes Brain Behav. 7, 385–392 (2008).

    Article  CAS  Google Scholar 

  26. Aoki-Suzuki, M. et al. A family-based association study and gene expression analyses of netrin-G1 and -G2 genes in schizophrenia. Biol. Psychiatry 57, 382–393 (2005).

    Article  CAS  Google Scholar 

  27. Johnson, K.G. & Van Vactor, D. Receptor protein tyrosine phosphatases in nervous system development. Physiol. Rev. 83, 1–24 (2003).

    Article  CAS  Google Scholar 

  28. Stryker, E. & Johnson, K.G. LAR, liprin alpha and the regulation of active zone morphogenesis. J. Cell Sci. 120, 3723–3728 (2007).

    Article  CAS  Google Scholar 

  29. Serra-Pages, C. et al. The LAR transmembrane protein tyrosine phosphatase and a coiled-coil LAR-interacting protein colocalize at focal adhesions. EMBO J. 14, 2827–2838 (1995).

    Article  CAS  Google Scholar 

  30. Kypta, R.M., Su, H. & Reichardt, L.F. Association between a transmembrane protein tyrosine phosphatase and the cadherin-catenin complex. J. Cell Biol. 134, 1519–1529 (1996).

    Article  CAS  Google Scholar 

  31. Zhen, M. & Jin, Y. The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Nature 401, 371–375 (1999).

    CAS  PubMed  Google Scholar 

  32. Kaufmann, N., DeProto, J., Ranjan, R., Wan, H. & Van Vactor, D. Drosophila liprin-alpha and the receptor phosphatase Dlar control synapse morphogenesis. Neuron 34, 27–38 (2002).

    Article  CAS  Google Scholar 

  33. Ackley, B.D. et al. The two isoforms of the Caenorhabditis elegans leukocyte-common antigen related receptor tyrosine phosphatase PTP-3 function independently in axon guidance and synapse formation. J. Neurosci. 25, 7517–7528 (2005).

    Article  CAS  Google Scholar 

  34. Dunah, A.W. et al. LAR receptor protein tyrosine phosphatases in the development and maintenance of excitatory synapses. Nat. Neurosci. 8, 458–467 (2005).

    Article  CAS  Google Scholar 

  35. O'Grady, P., Thai, T.C. & Saito, H. The laminin-nidogen complex is a ligand for a specific splice isoform of the transmembrane protein tyrosine phosphatase LAR. J. Cell Biol. 141, 1675–1684 (1998).

    Article  CAS  Google Scholar 

  36. Johnson, K.G. et al. The HSPGs Syndecan and Dallylike bind the receptor phosphatase LAR and exert distinct effects on synaptic development. Neuron 49, 517–531 (2006).

    Article  CAS  Google Scholar 

  37. Fox, A.N. & Zinn, K. The heparan sulfate proteoglycan syndecan is an in vivo ligand for the Drosophila LAR receptor tyrosine phosphatase. Curr. Biol. 15, 1701–1711 (2005).

    Article  CAS  Google Scholar 

  38. Yang, T. et al. Leukocyte antigen-related protein tyrosine phosphatase receptor: a small ectodomain isoform functions as a homophilic ligand and promotes neurite outgrowth. J. Neurosci. 23, 3353–3363 (2003).

    Article  CAS  Google Scholar 

  39. Biederer, T. & Scheiffele, P. Mixed-culture assays for analyzing neuronal synapse formation. Nat. Protoc. 2, 670–676 (2007).

    Article  CAS  Google Scholar 

  40. Ko, J. et al. SALM synaptic cell adhesion–like molecules regulate the differentiation of excitatory synapses. Neuron 50, 233–245 (2006).

    Article  CAS  Google Scholar 

  41. Zhang, J.S., Honkaniemi, J., Yang, T., Yeo, T.T. & Longo, F.M. LAR tyrosine phosphatase receptor: a developmental isoform is present in neurites and growth cones and its expression is regional- and cell-specific. Mol. Cell. Neurosci. 10, 271–286 (1998).

    Article  CAS  Google Scholar 

  42. Pulido, R., Serra-Pages, C., Tang, M. & Streuli, M. The LAR/PTP delta/PTP sigma subfamily of transmembrane protein-tyrosine- phosphatases: multiple human LAR, PTP delta and PTP sigma isoforms are expressed in a tissue-specific manner and associate with the LAR- interacting protein LIP.1. Proc. Natl. Acad. Sci. USA 92, 11686–11690 (1995).

    Article  CAS  Google Scholar 

  43. O'Grady, P., Krueger, N.X., Streuli, M. & Saito, H. Genomic organization of the human LAR protein tyrosine phosphatase gene and alternative splicing in the extracellular fibronectin type-III domains. J. Biol. Chem. 269, 25193–25199 (1994).

    CAS  PubMed  Google Scholar 

  44. Zhang, J.S. & Longo, F.M. LAR tyrosine phosphatase receptor: alternative splicing is preferential to the nervous system, coordinated with cell growth and generates novel isoforms containing extensive CAG repeats. J. Cell Biol. 128, 415–431 (1995).

    Article  CAS  Google Scholar 

  45. Patel, M.R. et al. Hierarchical assembly of presynaptic components in defined C. elegans synapses. Nat. Neurosci. 9, 1488–1498 (2006).

    Article  CAS  Google Scholar 

  46. Dai, Y. et al. SYD-2 Liprin-alpha organizes presynaptic active zone formation through ELKS. Nat. Neurosci. 9, 1479–1487 (2006).

    Article  CAS  Google Scholar 

  47. Bamji, S.X. et al. Role of beta-catenin in synaptic vesicle localization and presynaptic assembly. Neuron 40, 719–731 (2003).

    Article  CAS  Google Scholar 

  48. Bamji, S.X., Rico, B., Kimes, N. & Reichardt, L.F. BDNF mobilizes synaptic vesicles and enhances synapse formation by disrupting cadherin-beta-catenin interactions. J. Cell Biol. 174, 289–299 (2006).

    Article  CAS  Google Scholar 

  49. Majeti, R. & Weiss, A. Regulatory mechanisms for receptor protein tyrosine phosphatases. Chem. Rev. 101, 2441–2448 (2001).

    Article  CAS  Google Scholar 

  50. Nam, H.J., Poy, F., Krueger, N.X., Saito, H. & Frederick, C.A. Crystal structure of the tandem phosphatase domains of RPTP LAR. Cell 97, 449–457 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank A.M. Craig for neurexin 1α, 2α, 3α and 1β cDNAs, T. Biederer for SynCAM 1, Y.-P. Hsueh for Syndecan-2, P. Maness for NCAM-140, J. Ko for quantitative analysis, J. Nam for SALM4, M.-H. Kim for the mini analysis program, and Y.-G. Oh, M.-S. Baek, M. Ryu and J.-G. Jung for the help with antibody generation. This work was supported by the National Creative Research Initiative Program of the Korean Ministry of Science and Technology (E.K.).

Author information

Authors and Affiliations

Authors

Contributions

J.W. and S.-K.K. carried out the experiments, analyzed the data and wrote the manuscript. S.C. helped with the shRNA knockdown experiments. S.K., J.-R.L., A.W.D. and M.S. contributed reagents. E.K. supervised the project and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Eunjoon Kim.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Methods (PDF 5340 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woo, J., Kwon, SK., Choi, S. et al. Trans-synaptic adhesion between NGL-3 and LAR regulates the formation of excitatory synapses. Nat Neurosci 12, 428–437 (2009). https://doi.org/10.1038/nn.2279

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2279

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing