Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GABAB receptor activation mediates frequency-dependent plasticity of developing GABAergic synapses

Abstract

Activity-induced long-term modification of glutamatergic synapses depends on the frequency of synaptic activation. We found that long-term modification of developing rat hippocampal GABAergic synapses that was induced by repetitive coincident pre- and postsynaptic spiking was also frequency dependent. Spiking at 20–50 Hz resulted in synaptic potentiation, whereas spiking at 5 Hz led to synaptic depression. The potentiation was abolished by blocking GABAB receptors (GABABRs), whereas the depression was independent of GABABR activation and could be converted to potentiation by elevating GABABR activity. The potentiation could be attributed to a local postsynaptic increase in Na+/K+/2Cl− co-transporter activity near activated synapses. The activity of postsynaptic Ca2+/calmodulin-dependent protein kinase II was necessary for long-term potentiation of these developing GABAergic synapses and its phosphorylation at Thr286 could be enhanced by activating GABABRs with baclofen. Together with our finding that activation of GABABRs is frequency dependent, these results indicate that postsynaptic GABABR activation mediates frequency-dependent potentiation of developing GABAergic synapses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coincident pre- and postsynaptic spiking potentiates GABAergic synapses.
Figure 2: Activation of both GABAARs and GABABRs is required for LTP induction.
Figure 3: Frequency-dependent activation of GABABR-mediated postsynaptic currents.
Figure 4: Effects of GABABR activation on spiking frequency–dependent plasticity.
Figure 5: Postsynaptic expression of GABAergic synaptic modification.
Figure 6: NKCC1 is required for synaptic potentiation.
Figure 7: Postsynaptic Ca2+ elevation and CaMKII activity are required for synaptic potentiation.

Similar content being viewed by others

References

  1. Katz, L.C. & Shatz, C.J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Bliss, T.V. & Collingridge, G.L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Martin, S.J., Grimwood, P.D. & Morris, R.G. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Malenka, R.C. & Siegelbaum, S.A. Synaptic plasticity: diverse targets and mechanisms for regulating synaptic efficacy. in Synapses (eds. Cowan, W.M., Sudhof, T.C. & Stevens, C.F.) 393–453 (Johns Hopkins University Press, Baltimore, Maryland, 2001).

    Google Scholar 

  5. Malenka, R.C. & Bear, M.F. LTP and LTD: an embarrassment of riches. Neuron 44, 5–21 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Gaiarsa, J.L., Caillard, O. & Ben-Ari, Y. Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci. 25, 564–570 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Ben-Ari, Y., Gaiarsa, J.L., Tyzio, R. & Khazipov, R. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol. Rev. 87, 1215–1284 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Kano, M., Rexhausen, U., Dreessen, J. & Konnerth, A. Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature 356, 601–604 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Aizenman, C.D., Manis, P.B. & Linden, D.J. Polarity of long-term synaptic gain change is related to postsynaptic spike firing at a cerebellar inhibitory synapse. Neuron 21, 827–835 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Morishita, W. & Sastry, B.R. Postsynaptic mechanisms underlying long-term depression of GABAergic transmission in neurons of the deep cerebellar nuclei. J. Neurophysiol. 76, 59–68 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, J.H. & Stelzer, A. Shared calcium signaling pathways in the induction of long-term potentiation and synaptic disinhibition in CA1 pyramidal cell dendrites. J. Neurophysiol. 75, 1687–1702 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Caillard, O., Ben-Ari, Y. & Gaiarsa, J.L. Activation of presynaptic and postsynaptic ryanodine-sensitive calcium stores is required for the induction of long-term depression at GABAergic synapses in the neonatal rat hippocampus. J. Neurosci. 20, 1–6 (2000).

    Article  Google Scholar 

  13. McLean, H.A., Caillard, O., Ben-Ari, Y. & Gaiarsa, J.L. Bidirectional plasticity expressed by GABAergic synapses in the neonatal rat hippocampus. J. Physiol. (Lond.) 496, 471–477 (1996).

    Article  CAS  Google Scholar 

  14. Komatsu, Y. & Iwakiri, M. Long-term modification of inhibitory synaptic transmission in developing visual cortex. Neuroreport 4, 907–910 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Caillard, O., Ben-Ari, Y. & Gaiarsa, J.L. Mechanisms of induction and expression of long-term depression at GABAergic synapses in the neonatal rat hippocampus. J. Neurosci. 19, 7568–7577 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lien, C.C., Mu, Y., Vargas-Caballero, M. & Poo, M.M. Visual stimuli–induced LTD of GABAergic synapses mediated by presynaptic NMDA receptors. Nat. Neurosci. 9, 372–380 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Kulik, A. et al. Compartment-dependent colocalization of Kir3.2-containing K+ channels and GABAB receptors in hippocampal pyramidal cells. J. Neurosci. 26, 4289–4297 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Scanziani, M. GABA spillover activates postsynaptic GABAB receptors to control rhythmic hippocampal activity. Neuron 25, 673–681 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Dan, Y. & Poo, M.M. Spike timing–dependent plasticity of neural circuits. Neuron 44, 23–30 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Sjostrom, P.J., Turrigiano, G.G. & Nelson, S.B. Rate, timing and cooperativity jointly determine cortical synaptic plasticity. Neuron 32, 1149–1164 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Woodin, M.A., Ganguly, K. & Poo, M.M. Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl− transporter activity. Neuron 39, 807–820 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Thompson, S.M. & Gahwiler, B.H. Effects of the GABA uptake inhibitor tiagabine on inhibitory synaptic potentials in rat hippocampal slice cultures. J. Neurophysiol. 67, 1698–1701 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Harrison, N.L. On the presynaptic action of baclofen at inhibitory synapses between cultured rat hippocampal neurones. J. Physiol. (Lond.) 422, 433–446 (1990).

    Article  CAS  Google Scholar 

  24. Newberry, N.R. & Nicoll, R.A. Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells. Nature 308, 450–452 (1984).

    Article  CAS  PubMed  Google Scholar 

  25. Rivera, C., Voipio, J. & Kaila, K. Two developmental switches in GABAergic signaling: the K+-Cl− co-transporter KCC2 and carbonic anhydrase CAVII. J. Physiol. (Lond.) 562, 27–36 (2005).

    Article  CAS  Google Scholar 

  26. Kelsch, W. et al. Insulin-like growth factor 1 and a cytosolic tyrosine kinase activate chloride outward transport during maturation of hippocampal neurons. J. Neurosci. 21, 8339–8347 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Isaacson, J.S., Solis, J.M. & Nicoll, R.A. Local and diffuse synaptic actions of GABA in the hippocampus. Neuron 10, 165–175 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Buhl, E.H., Cobb, S.R., Halasy, K. & Somogyi, P. Properties of unitary IPSPs evoked by anatomically identified basket cells in the rat hippocampus. Eur. J. Neurosci. 7, 1989–2004 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Bienenstock, E.L., Cooper, L.N. & Munro, P.W. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, 32–48 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fiumelli, H., Cancedda, L. & Poo, M.M. Modulation of GABAergic transmission by activity via postsynaptic Ca2+-dependent regulation of KCC2 function. Neuron 48, 773–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Goda, Y. & Stevens, C.F. Two components of transmitter release at a central synapse. Proc. Natl. Acad. Sci. USA 91, 12942–12946 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Payne, J.A., Rivera, C., Voipio, J. & Kaila, K. Cation-chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci. 26, 199–206 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Churn, S.B. & DeLorenzo, R.J. Modulation of GABAergic receptor binding by activation of calcium and calmodulin-dependent kinase II membrane phosphorylation. Brain Res. 809, 68–76 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Kano, M., Kano, M., Fukunaga, K. & Konnerth, A. Ca2+-induced rebound potentiation of gamma-aminobutyric acid–mediated currents requires activation of Ca2+/calmodulin-dependent kinase II. Proc. Natl. Acad. Sci. USA 93, 13351–13356 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kawaguchi, S.Y. & Hirano, T. Signaling cascade regulating long-term potentiation of GABAA receptor responsiveness in cerebellar Purkinje neurons. J. Neurosci. 22, 3969–3976 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brumback, A.C. & Staley, K.J. Thermodynamic regulation of NKCC1-mediated Cl− co-transport underlies plasticity of GABAA signaling in neonatal neurons. J. Neurosci. 28, 1301–1312 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Klausberger, T. & Somogyi, P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321, 53–57 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Davies, C.H., Starkey, S.J., Pozza, M.F. & Collingridge, G.L. GABA autoreceptors regulate the induction of LTP. Nature 349, 609–611 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Bettler, B., Kaupmann, K., Mosbacher, J. & Gassmann, M. Molecular structure and physiological functions of GABAB receptors. Physiol. Rev. 84, 835–867 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Kang, J., Jiang, L., Goldman, S.A. & Nedergaard, M. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat. Neurosci. 1, 683–692 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Hirono, M., Yoshioka, T. & Konishi, S. GABAB receptor activation enhances mGluR-mediated responses at cerebellar excitatory synapses. Nat. Neurosci. 4, 1207–1216 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. New, D.C., An, H., Ip, N.Y. & Wong, Y.H. GABAB heterodimeric receptors promote Ca2+ influx via store-operated channels in rat cortical neurons and transfected Chinese hamster ovary cells. Neuroscience 137, 1347–1358 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Komatsu, Y. GABAB receptors, monoamine receptors, and postsynaptic inositol trisphosphate-induced Ca2+ release are involved in the induction of long-term potentiation at visual cortical inhibitory synapses. J. Neurosci. 16, 6342–6352 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pagano, A. et al. C-terminal interaction is essential for surface trafficking, but not for heteromeric assembly of GABAB receptors. J. Neurosci. 21, 1189–1202 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Calver, A.R. et al. The C-terminal domains of the GABAB receptor subunits mediate intracellular trafficking, but are not required for receptor signaling. J. Neurosci. 21, 1203–1210 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang, C.S. et al. Common molecular pathways mediate long-term potentiation of synaptic excitation and slow synaptic inhibition. Cell 123, 105–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Cancedda, L., Fiumelli, H., Chen, K. & Poo, M.M. Excitatory GABA action is essential for morphological maturation of cortical neurons in vivo. J. Neurosci. 27, 5224–5235 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chattopadhyaya, B. et al. GAD67-mediated GABA synthesis and signaling regulate inhibitory synaptic innervation in the visual cortex. Neuron 54, 889–903 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Y. Xiang, W.P. Ge, H. Lu, Q.S. Liu, H.K. Wang, X.W. Cheng, J.M. Jia and X.P. Zhou for technical help and discussion, and Huang Z.J. for comments on the manuscript. This work was supported by grants from the National Basic Research Program of China (2006CB806600 and 2006CB943900). M.-m.P. was supported in part by a grant from the US National Institutes of Health (NS 36999). X.-h.Z. was supported by an International Human Frontier Science Program Career Development Award.

Author information

Authors and Affiliations

Authors

Contributions

C.X. designed and conducted electrophysiology recording experiments and wrote the manuscript. M.-x.Z. conducted the western blot experiments. M.-m.P. and X.-h.Z. supervised the project and wrote the manuscript.

Corresponding authors

Correspondence to Mu-ming Poo or Xiao-hui Zhang.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Methods (PDF 339 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, C., Zhao, Mx., Poo, Mm. et al. GABAB receptor activation mediates frequency-dependent plasticity of developing GABAergic synapses. Nat Neurosci 11, 1410–1418 (2008). https://doi.org/10.1038/nn.2215

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2215

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing