Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Illuminating vital surface molecules of symbionts in health and disease

Abstract

The immunomodulatory surface molecules of commensal and pathogenic bacteria are critical to microorganisms' survival and the host's response1,2. Recent studies have highlighted the unique and important responses elicited by commensal-derived surface macromolecules35. However, the technology available to track these molecules in host cells and tissues remains primitive. We report, here, an interdisciplinary approach that uses metabolic labelling combined with bioorthogonal click chemistry (that is, reactions performed in living organisms)6 to specifically tag up to three prominent surface immunomodulatory macromolecules—peptidoglycan, lipopolysaccharide and capsular polysaccharide—either simultaneously or individually in live anaerobic commensal bacteria. Importantly, the peptidoglycan labelling enables, for the first time, the specific labelling of live endogenous, anaerobic bacteria within the mammalian host. This approach has allowed us to image and track the path of labelled surface molecules from live, luminal bacteria into specific intestinal immune cells in the living murine host during health and disease. The chemical labelling of three specific macromolecules within a live organism offers the potential for in-depth visualization of host–pathogen interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fluorescent d-amino acid labels PGN in commensal bacteria.
Figure 2: Use of HADA-labelled PGN to track live commensals in the host.
Figure 3: Simultaneous labelling of three cell surface molecules in commensal bacteria.
Figure 4: Simultaneous labelling of three cell surface molecules in commensal bacteria.

Similar content being viewed by others

References

  1. Fischbach, M. A. & Segre, J. A. Signaling in host-associated microbial communities. Cell 164, 1288–1300 (2016).

    Article  CAS  Google Scholar 

  2. Sommer, F. & Backhed, F. The gut microbiota—masters of host development and physiology. Nat. Rev. Microbiol. 11, 227–238 (2013).

    Article  CAS  Google Scholar 

  3. Ayres, J. S. Cooperative microbial tolerance behaviors in host–microbiota mutualism. Cell 165, 1323–1331 (2016).

    Article  CAS  Google Scholar 

  4. Lebeer, S., Vanderleyden, J. & De Keersmaecker, S. C. J. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat. Rev. Microbiol. 8, 171–184 (2010).

    Article  CAS  Google Scholar 

  5. Rooks, M. G. & Garrett, W. S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 16, 341–352 (2016).

    Article  CAS  Google Scholar 

  6. Sletten, E. M. & Bertozzi, C. R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. 48, 6974–6998 (2009).

    Article  CAS  Google Scholar 

  7. Earle, K. A. et al. Quantitative imaging of gut microbiota spatial organization. Cell Host Microbe. 18, 478–488 (2015).

    Article  CAS  Google Scholar 

  8. Welch, J. L. M., Rossetti, B. J., Rieken, C. W., Dewhirst, F. E. & Borisy, G. G. Biogeography of a human oral microbiome at the micron scale. Proc. Natl Acad. Sci. USA 113, E791–E800 (2016).

    Article  Google Scholar 

  9. Moter, A. & Göbel, U. B. Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J. Microbiol. Methods 41, 85–112 (2000).

    Article  CAS  Google Scholar 

  10. Siegrist, M. S., Swarts, B. M., Fox, D. M., Lim, S. A. & Bertozzi, C. R. Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface. FEMS Microbiol. Rev. 39, 184–202 (2015).

    Article  Google Scholar 

  11. Kocaoglu, O. & Carlson, E. E. Progress and prospects for small-molecule probes of bacterial imaging. Nat. Chem. Biol. 12, 472–478 (2016).

    Article  CAS  Google Scholar 

  12. Geva-Zatorsky, N. et al. In vivo imaging and tracking of host–microbiota interactions via metabolic labeling of gut anaerobic bacteria. Nat. Med. 21, 1091–1100 (2015).

    Article  CAS  Google Scholar 

  13. Boyce, M. & Bertozzi, C. R. Bringing chemistry to life. Nat. Methods 8, 638–642 (2011).

    Article  CAS  Google Scholar 

  14. Thaiss, C. A., Levy, M., Suez, J. & Elinav, E. The interplay between the innate immune system and the microbiota. Curr. Opin. Immunol. 26, 41–48 (2014).

    Article  CAS  Google Scholar 

  15. Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603–606 (2001).

    Article  CAS  Google Scholar 

  16. Kuru, E. et al. In situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent d-amino acids. Angew. Chem. Int. Ed. 51, 12519–12523 (2012).

    Article  CAS  Google Scholar 

  17. Hsu, Y.-P., Meng, X. & VanNieuwenhze, M. S. in Methods in Microbiology Vol. 43 (eds Jensen, G. J. & Harwood, C. ) 3–48 (Academic, 2016).

    Google Scholar 

  18. Mowat, A. M. & Agace, W. W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14, 667–685 (2014).

    Article  CAS  Google Scholar 

  19. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005).

    Article  CAS  Google Scholar 

  20. Farache, J. et al. Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity 38, 581–595 (2013).

    Article  CAS  Google Scholar 

  21. Mazzini, E., Massimiliano, L., Penna, G. & Rescigno, M. Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1+ macrophages to CD103+ dendritic cells. Immunity 40, 248–261 (2014).

    Article  CAS  Google Scholar 

  22. Reboldi, A. et al. IgA production requires B cell interaction with subepithelial dendritic cells in Peyer's patches. Science 352, aaf4822 (2016).

    Article  Google Scholar 

  23. Diehl, G. E. et al. Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX3CR1hi cells. Nature 494, 116–120 (2013).

    Article  CAS  Google Scholar 

  24. Sánchez de Medina, F., Romero-Calvo, I., Mascaraque, C. & Martínez-Augustin, O. Intestinal inflammation and mucosal barrier function. Inflamm. Bowel Dis. 20, 2394–2404 (2014).

    Article  Google Scholar 

  25. Sartor, R. B. Microbial influences in inflammatory bowel diseases. Gastroenterology 134, 577–594 (2008).

    Article  CAS  Google Scholar 

  26. Dumont, A., Malleron, A., Awwad, M., Dukan, S. & Vauzeilles, B. Click-mediated labeling of bacterial membranes through metabolic modification of the lipopolysaccharide inner core. Angew. Chem. Int. Ed. 51, 3143–3146 (2012).

    Article  CAS  Google Scholar 

  27. Kumada, H., Haishima, Y., Kondo, S., Umemoto, T. & Hisatsune, K. Occurrence of 2-keto-3-deoxyoctonate (KDO) and KDO phosphate in lipopolysaccharides of Bacteriodes species. Curr. Microbiol. 26, 239–244 (1993).

    Article  CAS  Google Scholar 

  28. Patterson, D. M., Jones, K. A. & Prescher, J. A. Improved cyclopropene reporters for probing protein glycosylation. Mol. Biosyst. 10, 1693–1697 (2014).

    Article  CAS  Google Scholar 

  29. Patterson, D. M., Nazarova, L. A., Xie, B., Kamber, D. N. & Prescher, J. A. Functionalized cyclopropenes as bioorthogonal chemical reporters. J. Am. Chem. Soc. 134, 18638–18643 (2012).

    Article  CAS  Google Scholar 

  30. Elson, C. O. et al. Experimental models of inflammatory bowel disease reveal innate, adaptive, and regulatory mechanisms of host dialogue with the microbiota. Immunol. Rev. 206, 260–276 (2005).

    Article  Google Scholar 

  31. Wirtz, S., Neufert, C., Weigmann, B. & Neurath, M. F. Chemically induced mouse models of intestinal inflammation. Nat. Protoc. 2, 541–546 (2007).

    Article  CAS  Google Scholar 

  32. Couter, C. J. & Surana, N. K. Isolation and flow cytometric characterization of murine small intestinal lymphocytes. J. Vis. Exp. 111, e54114 (2016).

    Google Scholar 

  33. Millet, Y. A. et al. Insights into Vibrio cholerae intestinal colonization from monitoring fluorescently labeled bacteria. PLoS Pathog. 10, e1004405 (2014).

    Article  Google Scholar 

  34. Thévenaz, P., Ruttimann, U. E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27–41 (1998).

    Article  Google Scholar 

  35. Saalfeld, S., Fetter, R., Cardona, A. & Tomancak, P. Elastic volume reconstruction from series of ultra-thin microscopy sections. Nat. Methods 9, 717–720 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Harvard Medical School Center for Immune Imaging for providing instrumentation and aid for two-photon microscopy. The authors thank N. Geva-Zatorsky and F. Gazzaniga for materials, expertise and discussion, D. Erturk-Hasdemir and N. Okan for aid in cell culture and isolation of bone marrow macrophages, and C. Hudak for discussion and manuscript critique. This work was funded by a grant from the US Department of Defense (W81XWH-15-1-0368) and was supported in part by the US National Institutes of Health (grants PO1 AI1112521, RO1 AI111595 (to U.H.v.A.) and 5T32 HL066987 (to D.A.)). Additional support to U.H.v.A. was provided by the Ragon Institute at MGH, MIT and Harvard. J.E.H. was supported by the Cancer Research Institute Irvington Fellowship Program.

Author information

Authors and Affiliations

Authors

Contributions

J.E.H. designed the experiments, analysed the data and wrote the manuscript with help from D.A. and A.S. D.A. provided expertise in two-photon intravital microscopy. D.L.K. supervised the study, edited the manuscript and provided helpful comments, with assistance from U.H.v.A.

Corresponding author

Correspondence to Dennis L. Kasper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–13, Supplementary Notes and Supplementary References. (PDF 18026 kb)

Supplementary Video 1

Intravital two-photon microscopy of the commensal microflora in the mouse colon. (MOV 12295 kb)

Supplementary Video 2

Intravital two-photon microscopy of the commensal microflora in the mouse colon. (MOV 11091 kb)

Supplementary Video 3

Intravital two-photon microscopy of the commensal microbe B. vulgatus in the mouse small intestine. (MOV 4731 kb)

Supplementary Video 4

Intravital two-photon microscopy of the commensal microbe B. vulgatus in the mouse small intestine. (MOV 6610 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hudak, J., Alvarez, D., Skelly, A. et al. Illuminating vital surface molecules of symbionts in health and disease. Nat Microbiol 2, 17099 (2017). https://doi.org/10.1038/nmicrobiol.2017.99

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2017.99

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing