Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Longevity of major coenzymes allows minimal de novo synthesis in microorganisms

Abstract

Coenzymes are vital for cellular metabolism and act on the full spectrum of enzymatic reactions. Intrinsic chemical reactivity, enzyme promiscuity and high flux through their catalytic cycles make coenzymes prone to damage. To counteract such compromising factors and ensure stable levels of functional coenzymes, cells use a complex interplay between de novo synthesis, salvage, repair and degradation. However, the relative contribution of these factors is currently unknown, as is the overall stability of coenzymes in the cell. Here, we use dynamic 13C-labelling experiments to determine the half-life of major coenzymes of Escherichia coli. We find that coenzymes such as pyridoxal 5-phosphate, flavins, nicotinamide adenine dinucleotide (phosphate) and coenzyme A are remarkably stable in vivo and allow biosynthesis close to the minimal necessary rate. In consequence, they are essentially produced to compensate for dilution by growth and passed on over generations of cells. Exceptions are antioxidants, which are short-lived, suggesting an inherent requirement for increased renewal. Although the growth-driven turnover of stable coenzymes is apparently subject to highly efficient end-product homeostasis, we exemplify that coenzyme pools are propagated in excess in relation to actual growth requirements. Additional testing of Bacillus subtilis and Saccharomyces cerevisiae suggests that coenzyme longevity is a conserved feature in biology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of coenzyme homeostasis in prototrophic organisms.
Figure 2: Turnover of organic coenzymes in relation to growth based on 13C dynamic labelling in E. coli.
Figure 3: The catalytic cores of CoA and NAD undergo minimal exchange.
Figure 4: Dilution by growth drives coenzyme turnover in E. coli.
Figure 5: Coenzyme pool propagation.

Similar content being viewed by others

References

  1. Fischer, J. D., Holliday, G. L., Rahman, S. A. & Thornton, J. M. The structures and physicochemical properties of organic cofactors in biocatalysis. J. Mol. Biol. 403, 803–824 (2010).

    Article  CAS  Google Scholar 

  2. Eyschen, J. et al. Engineered glycolytic glyceraldehyde-3-phosphate dehydrogenase binds the anti conformation of NAD+ nicotinamide but does not experience A-specific hydride transfer. Arch. Biochem. Biophys. 364, 219–227 (1999).

    Article  CAS  Google Scholar 

  3. Lu, P. et al. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat. Biotechnol. 25, 117–124 (2007).

    Article  CAS  Google Scholar 

  4. Bennett, B. D. et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5, 593–599 (2009).

    Article  CAS  Google Scholar 

  5. Linster, C. L., Van Schaftingen, E. & Hanson, A. D. Metabolite damage and its repair or pre-emption. Nat. Chem. Biol. 9, 72–80 (2013).

    Article  CAS  Google Scholar 

  6. Khersonsky, O. & Tawfik, D. S. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu. Rev. Biochem. 79, 471–505 (2010).

    Article  CAS  Google Scholar 

  7. Oppenheimer, N. J. & Kaplan, N. O. Glyceraldehyde-3-phosphate dehydrogenase catalyzed hydration of the 5-6 double bond of reduced β-nicotinamide adenine dinucleotide (βNADH). Formation of β-6-hydroxy-1,4,5,6-tetrahydronicotinamide adenine dinucleotide. Biochemistry 13, 4685–4694 (1974).

    Article  CAS  Google Scholar 

  8. Lerma-Ortiz, C. et al. ‘Nothing of chemistry disappears in biology’: the top 30 damage-prone endogenous metabolites. Biochem. Soc. Trans. 44, 961–971 (2016).

    Article  CAS  Google Scholar 

  9. Keller, M. A., Piedrafita, G. & Ralser, M. The widespread role of non-enzymatic reactions in cellular metabolism. Curr. Opin. Biotechnol. 34, 153–161 (2015).

    Article  CAS  Google Scholar 

  10. Golubev, A. G. The other side of metabolism: a review. Biochemistry 61, 2018–2039 (1996).

    CAS  Google Scholar 

  11. Linster, C. L. et al. Ethylmalonyl-CoA decarboxylase, a new enzyme involved in metabolite proofreading. J. Biol. Chem. 286, 42992–43003 (2011).

    Article  CAS  Google Scholar 

  12. Marbaix, A. Y. et al. Extremely conserved ATP- or ADP-dependent enzymatic system for nicotinamide nucleotide repair. J. Biol. Chem. 286, 41246–41252 (2011).

    Article  CAS  Google Scholar 

  13. Vinci, C. R. & Clarke, S. G. Homocysteine methyltransferases Mht1 and Sam4 prevent the accumulation of age-damaged (R,S)-AdoMet in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 285, 20526–20531 (2010).

    Article  CAS  Google Scholar 

  14. Huang, L. et al. A family of metal-dependent phosphatases implicated in metabolite damage-control. Nat. Chem. Biol. 12, 621–627 (2016).

    Article  CAS  Google Scholar 

  15. Kremer, L. S. et al. NAXE mutations disrupt the cellular NAD(P)HX repair system and cause a lethal neurometabolic disorder of early childhood. Am. J. Hum. Genet. 99, 894–902 (2016).

    Article  CAS  Google Scholar 

  16. Mills, P. B. et al. Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nat. Med. 12, 307–309 (2006).

    Article  CAS  Google Scholar 

  17. Coburn, S. P. Location and turnover of vitamin B6 pools and vitamin B6 requirements of humans. Ann. NY Acad. Sci. 585, 76–85 (1990).

    Article  CAS  Google Scholar 

  18. Gregory, J. F. III & Quinlivan, E. P. In vivo kinetics of folate metabolism. Annu. Rev. Nutr. 22, 199–220 (2002).

    Article  CAS  Google Scholar 

  19. Buescher, J. M. et al. A roadmap for interpreting 13C metabolite labeling patterns from cells. Curr. Opin. Biotechnol. 34, 189–201 (2015).

    Article  CAS  Google Scholar 

  20. Kiefer, P. et al. Dynamet: a fully automated pipeline for dynamic LC-MS data. Anal. Chem. 87, 9679 (2015).

    Article  CAS  Google Scholar 

  21. Shamir, M., Bar-On, Y., Phillips, R. & Milo, R. Snapshot: timescales in cell biology. Cell 164, 1302–1302 (2016).

    Article  CAS  Google Scholar 

  22. Bertoldi, M. & Voltattorni, C. B. Dopa decarboxylase exhibits low pH half-transaminase and high pH oxidative deaminase activities toward serotonin (5-hydroxytryptamine). Prot. Sci. 10, 1178–1186 (2001).

    Article  CAS  Google Scholar 

  23. Mewies, M., McIntire, W. S. & Scrutton, N. S. Covalent attachment of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) to enzymes: the current state of affairs. Protein Sci. 7, 7–20 (1998).

    Article  CAS  Google Scholar 

  24. Thomas, J. & Cronan, J. E. The enigmatic acyl carrier protein phosphodiesterase of Escherichia coli: genetic and enzymological characterization. J. Biol. Chem. 280, 34675–34683 (2005).

    Article  CAS  Google Scholar 

  25. Sorci, L., Ruggieri, S. & Raffaelli, N. NAD homeostasis in the bacterial response to DNA/RNA damage. DNA Repair 23, 17–26 (2014).

    Article  CAS  Google Scholar 

  26. Manlapaz-Fernandez, P. & Olivera, B. M. Pyridine nucleotide metabolism in Escherichia coli. IV. Turnover. J. Biol. Chem. 248, 5150–5155 (1973).

    CAS  PubMed  Google Scholar 

  27. Hillyard, D. et al. The pyridine nucleotide cycle. Studies in Escherichia coli and the human cell line D98/AH2. J. Biol. Chem. 256, 8491–8497 (1981).

    CAS  PubMed  Google Scholar 

  28. Baudouin-Cornu, P. et al. Glutathione degradation is a key determinant of glutathione homeostasis. J. Biol. Chem. 287, 4552–4561 (2012).

    Article  CAS  Google Scholar 

  29. Hanson, A. D. & Gregory, J. F. III Folate biosynthesis, turnover, and transport in plants. Annu. Rev. Plant Biol. 62, 105–125 (2011).

    Article  CAS  Google Scholar 

  30. Thiaville, J. J. et al. Experimental and metabolic modeling evidence for a folate-cleaving side-activity of ketopantoate hydroxymethyltransferase (PanB). Front. Microbiol. 7, 431 (2016).

    Article  Google Scholar 

  31. Jeanguenin, L. et al. Moonlighting glutamate formiminotransferases can functionally replace 5-formyltetrahydrofolate cycloligase. J. Biol. Chem. 285, 41557–41566 (2010).

    Article  CAS  Google Scholar 

  32. Ferone, R., Hanlon, M. H., Singer, S. C. & Hunt, D. F. α-Carboxyl-linked glutamates in the folylpolyglutamates of Escherichia coli. J. Biol. Chem. 261, 16356–16362 (1986).

    CAS  PubMed  Google Scholar 

  33. Tokumoto, U. & Takahashi, Y. Genetic analysis of the isc operon in Escherichia coli involved in the biogenesis of cellular iron–sulfur proteins. J. Biochem. 130, 63–71 (2001).

    Article  CAS  Google Scholar 

  34. Monod, J. The growth of bacterial cultures. Annu. Rev. Microbiol. 3, 371–394 (1949).

    Article  CAS  Google Scholar 

  35. Wilson, A. C. & Pardee, A. B. Regulation of flavin synthesis by Escherichia coli. J. Gen. Microbiol. 28, 283–303 (1962).

    Article  CAS  Google Scholar 

  36. Rechsteiner, M., Hillyard, D. & Olivera, B. M. Magnitude and significance of NAD turnover in human cell line D98/AH2. Nature 259, 695–696 (1976).

    Article  CAS  Google Scholar 

  37. Gaballa, A. et al. Biosynthesis and functions of bacillithiol, a major low-molecular-weight thiol in Bacilli. Proc. Natl Acad. Sci. USA 107, 6482–6486 (2010).

    Article  CAS  Google Scholar 

  38. Mandal, M. et al. Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113, 577–586 (2003).

    Article  CAS  Google Scholar 

  39. Larrabee, K. L., Phillips, J. O., Williams, G. J. & Larrabee, A. R. The relative rates of protein synthesis and degradation in a growing culture of Escherichia coli. J. Biol. Chem. 255, 4125–4130 (1980).

    CAS  PubMed  Google Scholar 

  40. Christiano, R., Nagaraj, N., Frohlich, F. & Walther, T. C. Global proteome turnover analyses of the yeasts S. cerevisiae and S. pombe. Cell Rep. 9, 1959–1965 (2014).

    Article  CAS  Google Scholar 

  41. Eden, E. et al. Proteome half-life dynamics in living human cells. Science 331, 764–768 (2011).

    Article  CAS  Google Scholar 

  42. Toyama, B. H. et al. Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell 154, 971–982 (2013).

    Article  CAS  Google Scholar 

  43. Thayer, N. H. et al. Identification of long-lived proteins retained in cells undergoing repeated asymmetric divisions. Proc. Natl Acad. Sci. USA 111, 14019–14026 (2014).

    Article  CAS  Google Scholar 

  44. Golubev, A., Hanson, A. D. & Gladyshev, V. N. Non-enzymatic molecular damage as a prototypic driver of aging. J. Biol. Chem. 292, 6029–6038 (2017).

    Article  CAS  Google Scholar 

  45. Kun, A., Papp, B. & Szathmary, E. Computational identification of obligatorily autocatalytic replicators embedded in metabolic networks. Genome Biol. 9, R51 (2008).

    Article  Google Scholar 

  46. Schmidt, R. et al. Computing autocatalytic sets to unravel inconsistencies in metabolic network reconstructions. Bioinformatics 31, 373–381 (2015).

    Article  CAS  Google Scholar 

  47. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

    Article  Google Scholar 

  48. Mülleder, M. et al. A prototrophic deletion mutant collection for yeast metabolomics and systems biology. Nat. Biotechnol. 30, 1176–1178 (2012).

    Article  Google Scholar 

  49. Tannler, S., Decasper, S. & Sauer, U. Maintenance metabolism and carbon fluxes in Bacillus species. Microb. Cell Fact. 7, 19 (2008).

    Article  Google Scholar 

  50. Baganz, F. et al. Suitability of replacement markers for functional analysis studies in Saccharomyces cerevisiae. Yeast 13, 1563–1573 (1997).

    Article  CAS  Google Scholar 

  51. Bolten, C. J. et al. Sampling for metabolome analysis of microorganisms. Anal. Chem. 79, 3843–3849 (2007).

    Article  CAS  Google Scholar 

  52. Müller, J. E. et al. Core pathways operating during methylotrophy of Bacillus methanolicus MGA3 and induction of a bacillithiol-dependent detoxification pathway upon formaldehyde stress. Mol. Microbiol. 98, 1089–1100 (2015).

    Article  Google Scholar 

  53. Rabinowitz, J. D. & Kimball, E. Acidic acetonitrile for cellular metabolome extraction from Escherichia coli. Anal. Chem. 79, 6167–6173 (2007).

    Article  CAS  Google Scholar 

  54. Campbell, K., Vowinckel, J., Keller, M. A. & Ralser, M. Methionine metabolism alters oxidative stress resistance via the pentose phosphate pathway. Antioxid. Redox Signal. 24, 543–547 (2016).

    Article  CAS  Google Scholar 

  55. Kiefer, P., Delmotte, N. & Vorholt, J. A. Nanoscale ion-pair reversed-phase HPLC-MS for sensitive metabolome analysis. Anal. Chem. 83, 850–855 (2011).

    Article  CAS  Google Scholar 

  56. Mashego, M. R. et al. MIRACLE: mass isotopomer ratio analysis of U-13C-labeled extracts. A new method for accurate quantification of changes in concentrations of intracellular metabolites. Biotechnol. Bioeng. 85, 620–628 (2004).

    Article  CAS  Google Scholar 

  57. Kiefer, P., Schmitt, U. & Vorholt, J. A. eMZed: an open source framework in Python for rapid and interactive development of LC/MS data analysis workflows. Bioinformatics 29, 963–964 (2013).

    Article  CAS  Google Scholar 

  58. Moseley, H. N. Correcting for the effects of natural abundance in stable isotope resolved metabolomics experiments involving ultra-high resolution mass spectrometry. BMC Bioinformatics 11, 139 (2010).

    Article  Google Scholar 

  59. Haug, K. et al. MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res. 41, D781–D786 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank U. Sauer and J.-C. Portais for discussions and comments on the manuscript and P. Christen for technical support with LC-MS. This work was supported by the Swiss National Science Foundation (grant no. 31003A-173094) and ETH Zurich.

Author information

Authors and Affiliations

Authors

Contributions

J.H., P.K., F.M. and J.A.V. planned the project and designed the experiments. J.H. and F.M. performed the experiments. J.H. and P.K. set-up LC-MS methods and data analysis. J.H. performed measurements and data analysis. J.H. and J.A.V. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Julia A. Vorholt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1-9, Supplementary Tables 1-6, Supplementary Methods, Supplementary References. (PDF 2291 kb)

Supplementary Data 1

Excel file containing analysed LC-MS and LC-MS/MS data from a long-term dynamic labelling switch experiment (12C to 13C) with Escherichia coli. (XLSX 301 kb)

Supplementary Data 2

Excel file containing analysed LC-MS and LC-MS/MS data from a long-term dynamic labelling switch experiment (13C to 12C) with Escherichia coli. (XLSX 301 kb)

Supplementary Data 3

Excel file containing analysed LC-MS and LC-MS/MS data from a long-term dynamic labelling switch experiment (12C to 13C) with Escherichia coli Δfdx. (XLSX 315 kb)

Supplementary Data 4

Excel file containing analysed LC-MS and LC-MS/MS data from a long-term dynamic labelling switch experiment (12C to 13C) with Escherichia coli. (XLSX 283 kb)

Supplementary Data 5

Excel file containing analysed LC-MS and LC-MS/MS data from a long-term dynamic labelling switch experiment (12C to 13C) with Saccharomyces cerevisiae. (XLSX 199 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartl, J., Kiefer, P., Meyer, F. et al. Longevity of major coenzymes allows minimal de novo synthesis in microorganisms. Nat Microbiol 2, 17073 (2017). https://doi.org/10.1038/nmicrobiol.2017.73

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2017.73

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research