Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Convergent evolution of a modified, acetate-driven TCA cycle in bacteria

An Author Correction to this article was published on 27 June 2018

Abstract

The tricarboxylic acid (TCA) cycle is central to energy production and biosynthetic precursor synthesis in aerobic organisms. There are few known variations of a complete TCA cycle, with the common notion being that the enzymes involved have already evolved towards optimal performance. Here, we present evidence that an alternative TCA cycle, in which acetate:succinate CoA-transferase (ASCT) replaces the enzymatic step typically performed by succinyl-CoA synthetase (SCS), has arisen in diverse bacterial groups, including microbial symbionts of animals such as humans and insects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An acetate-driven TCA cycle in diverse bacteria.

Similar content being viewed by others

References

  1. Meyer, F. M. et al. Metab. Eng. 13, 18–27 (2011).

    Article  CAS  Google Scholar 

  2. Wu, F. & Minteer, S. Angew. Chem. Int. Ed. 54, 1851–1854 (2015).

    Article  CAS  Google Scholar 

  3. Buchanan, B. B. & Arnon, D. I. Photosynth. Res. 24, 47–53 (1990).

    Article  CAS  Google Scholar 

  4. Zhang, S. & Bryant, D. A. Science 334, 1551–1553 (2011).

    Article  CAS  Google Scholar 

  5. Baughn, A. D., Garforth, S. J., Vilchèze, C. & Jacobs, W. R. Jr . PLoS Pathogens 5, e1000662 (2009).

    Article  Google Scholar 

  6. Kather, B., Stingl, K., van der Rest, M. E., Altendorf, K. & Molenaar, D. J. Bacteriol. 182, 3204–3209 (2000).

    Article  CAS  Google Scholar 

  7. Mullins, E. A., Francois, J. A. & Kappock, T. J. J. Bacteriol. 190, 4933–4940 (2008).

    Article  CAS  Google Scholar 

  8. Mullins, E. A. & Kappock, T. J. Biochemistry 51, 8422–8434 (2012).

    Article  CAS  Google Scholar 

  9. Kwong, W. K., Engel, P., Koch, H. & Moran, N. A. Proc. Natl Acad. Sci. USA 111, 11509–11514 (2014).

    Article  CAS  Google Scholar 

  10. Powell, J. E., Leonard, S. P., Kwong, W. K., Engel, P. & Moran, N. A. Proc. Natl Acad. Sci. USA 113, 13887–13892 (2016).

    Article  CAS  Google Scholar 

  11. Söhling, B. & Gottschalk, G. J. Bacteriol. 178, 871–880 (1996).

    Article  Google Scholar 

  12. van Grinsven, K. W. et al. J. Biol. Chem. 283, 1411–1418 (2008).

    Article  CAS  Google Scholar 

  13. Wertz, J. T. & Breznak, J. A. Appl. Environ. Microbiol. 73, 6829–6841 (2007).

    Article  CAS  Google Scholar 

  14. Meléndez-Hevia, E., Waddell, T. G. & Cascante, M. J. Mol. Evol. 43, 293–303 (1996).

    Article  Google Scholar 

  15. Ai, H. W., Shaner, N. C., Cheng, Z., Tsien, R. Y. & Campbell, R. E. Biochemistry 46, 5904–5910 (2007).

    Article  CAS  Google Scholar 

  16. Baba, T. et al. Mol. Syst. Biol. 2, 2006.0008 (2006).

    Article  Google Scholar 

  17. Stamatakis, A. Bioinformatics 30, 1312–1313 (2014).

    Article  CAS  Google Scholar 

  18. Emms, D. M. & Kelly, S. Genome Biol. 16, 157 (2015).

    Article  Google Scholar 

  19. Edgar, R. C. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Canadian Natural Sciences and Engineering Research Council through Postgraduate Scholarship award PGSD-3-420434-2012 (to W.K.K.), the US National Science Foundation Dimensions of Biodiversity awards 1046153 and 1415604 and the US National Institutes of Health award 1R01GM108477-01 (to N.A.M.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, formal analysis, visualization and writing of the original draft were carried out by W.K.K. Methodology and investigation were performed by W.K.K. and H.Z. Writing, reviewing and editing of the manuscript were carried out by W.K.K., H.Z. and N.A.M. Resources and supervision were provided by N.A.M.

Corresponding author

Correspondence to Waldan K. Kwong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–3, Supplementary Tables 1 and 2. (PDF 263 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwong, W., Zheng, H. & Moran, N. Convergent evolution of a modified, acetate-driven TCA cycle in bacteria. Nat Microbiol 2, 17067 (2017). https://doi.org/10.1038/nmicrobiol.2017.67

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2017.67

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology