Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for λN-dependent processive transcription antitermination

Abstract

λN-mediated processive antitermination constitutes a paradigmatic transcription regulatory event, during which phage protein λN, host factors NusA, NusB, NusE and NusG, and an RNA nut site render elongating RNA polymerase termination-resistant. The structural basis of the process has so far remained elusive. Here we describe a crystal structure of a λN–NusA–NusB–NusE–nut site complex and an electron cryo-microscopic structure of a complete transcription antitermination complex, comprising RNA polymerase, DNA, nut site RNA, all Nus factors and λN, validated by crosslinking/mass spectrometry. Due to intrinsic disorder, λN can act as a multiprotein/RNA interaction hub, which, together with nut site RNA, arranges NusA, NusB and NusE into a triangular complex. This complex docks via the NusA N-terminal domain and the λN C-terminus next to the RNA exit channel on RNA polymerase. Based on the structures, comparative crosslinking analyses and structure-guided mutagenesis, we hypothesize that λN mounts a multipronged strategy to reprogram the transcriptional machinery, which may include (1) the λN C terminus clamping the RNA exit channel, thus stabilizing the DNA:RNA hybrid; (2) repositioning of NusA and RNAP elements, thus redirecting nascent RNA and sequestering the upstream branch of a terminator hairpin; and (3) hindering RNA engagement of termination factor ρ and/or obstructing ρ translocation on the transcript.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of a λN1–84–NusAΔAR2–NusB–NusE–nut RNP.
Figure 2: Interaction studies.
Figure 3: Mapping of subunit variants.
Figure 4: Structure of a λN-based transcription antitermination complex.
Figure 5: Mechanism of λN-mediated processive antitermination.
Figure 6: In vitro functional analysis of antitermination activity.

Similar content being viewed by others

References

  1. Zhang, J. & Landick, R. A two-way street: regulatory interplay between RNA polymerase and nascent RNA structure. Trends Biochem. Sci. 41, 293–310 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mooney, R. A. et al. Regulator trafficking on bacterial transcription units in vivo. Mol. Cell 33, 97–108 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yang, X. & Lewis, P. J. The interaction between RNA polymerase and the elongation factor NusA. RNA Biol. 7, 272–275 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Tomar, S. K. & Artsimovitch, I. NusG–Spt5 proteins—universal tools for transcription modification and communication. Chem. Rev. 113, 8604–8619 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nudler, E. & Gottesman, M. E. Transcription termination and anti-termination in E. coli. Genes Cells 7, 755–768 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Ciampi, M. S. Rho-dependent terminators and transcription termination. Microbiology 152, 2515–2528 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Torres, M., Condon, C., Balada, J. M., Squires, C. & Squires, C. L. Ribosomal protein S4 is a transcription factor with properties remarkably similar to nusA, a protein involved in both non-ribosomal and ribosomal RNA antitermination. EMBO J. 20, 3811–3820 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Worbs, M., Bourenkov, G. P., Bartunik, H. D., Huber, R. & Wahl, M. C. An extended RNA binding surface through arrayed S1 and KH domains in transcription factor NusA. Mol. Cell 7, 1177–1189 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Luo, X. et al. Structural and functional analysis of the E. coli NusB–S10 transcription antitermination complex. Mol. Cell 32, 791–802 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stagno, J. R. et al. Structural basis for RNA recognition by NusB and NusE in the initiation of transcription antitermination. Nucleic Acids Res. 39, 7803–7815 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou, Y., Mah, T. F., Greenblatt, J. & Friedman, D. I. Evidence that the KH RNA-binding domains influence the action of the E. coli NusA protein. J. Mol. Biol. 318, 1175–1188 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Mogridge, J. et al. Independent ligand-induced folding of the RNA-binding domain and two functionally distinct antitermination regions in the phage lambda N protein. Mol. Cell 1, 265–275 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Legault, P., Li, J., Mogridge, J., Kay, L. E. & Greenblatt, J. NMR structure of the bacteriophage lambda N peptide/boxB RNA complex: recognition of a GNRA fold by an arginine-rich motif. Cell 93, 289–299 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Scharpf, M. et al. Antitermination in bacteriophage lambda. The structure of the N36 peptide–boxB RNA complex. Eur. J. Biochem. 267, 2397–2408 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Mogridge, J., Mah, T. F. & Greenblatt, J. Involvement of boxA nucleotides in the formation of a stable ribonucleoprotein complex containing the bacteriophage lambda N protein. J. Biol. Chem. 273, 4143–4148 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Mah, T. F., Li, J., Davidson, A. R. & Greenblatt, J. Functional importance of regions in Escherichia coli elongation factor NusA that interact with RNA polymerase, the bacteriophage lambda N protein and RNA. Mol. Microbiol. 34, 523–537 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Bonin, I. et al. Structural basis for the interaction of Escherichia coli NusA with protein N of phage lambda. Proc. Natl. Acad. Sci. USA. 101, 13762–13767 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mishra, S., Mohan, S., Godavarthi, S. & Sen, R. The interaction surface of a bacterial transcription elongation factor required for complex formation with an antiterminator during transcription antitermination. J. Biol. Chem. 288, 28089–28103 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mah, T. F., Kuznedelov, K., Mushegian, A., Severinov, K. & Greenblatt, J. The alpha subunit of E. coli RNA polymerase activates RNA binding by NusA. Genes Dev. 14, 2664–2675 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mogridge, J., Mah, T. F. & Greenblatt, J. A protein–RNA interaction network facilitates the template-independent cooperative assembly on RNA polymerase of a stable antitermination complex containing the lambda N protein. Genes Dev. 9, 2831–2845 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Zhou, Y. et al. Interactions of an Arg-rich region of transcription elongation protein NusA with NUT RNA: implications for the order of assembly of the lambda N antitermination complex in vivo. J. Mol. Biol. 310, 33–49 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Friedman, D. I. & Baron, L. S. Genetic characterization of a bacterial locus involved in the activity of the N function of phage lambda. Virology 58, 141–148 (1974).

    Article  CAS  PubMed  Google Scholar 

  23. Ward, D. F. & Gottesman, M. E. The nus mutations affect transcription termination in Escherichia coli. Nature 292, 212–215 (1981).

    Article  CAS  PubMed  Google Scholar 

  24. Craven, M. G. & Friedman, D. I. Analysis of the Escherichia coli nusA10(Cs) allele: relating nucleotide changes to phenotypes. J. Bacteriol. 173, 1485–1491 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Craven, M. G. et al. Escherichia coliSalmonella typhimurium hybrid nusA genes: identification of a short motif required for action of the lambda N transcription antitermination protein. J. Bacteriol. 176, 1394–1404 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Friedman, D. I. et al. Interactions of bacteriophage and host macromolecules in the growth of bacteriophage lambda. Microbiol. Rev. 48, 299–325 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ward, D. F., DeLong, A. & Gottesman, M. E. Escherichia coli nusB mutations that suppress nusA1 exhibit lambda N specificity. J. Mol. Biol. 168, 73–85 (1983).

    Article  CAS  PubMed  Google Scholar 

  28. Friedman, D. I., Schauer, A. T., Baumann, M. R., Baron, L. S. & Adhya, S. L. Evidence that ribosomal protein S10 participates in control of transcription termination. Proc. Natl Acad. Sci. USA 78, 1115–1118 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sparkowski, J. & Das, A. Simultaneous gain and loss of functions caused by a single amino acid substitution in the beta subunit of Escherichia coli RNA polymerase: suppression of nusA and rho mutations and conditional lethality. Genetics 130, 411–428 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Friedman, D. I. & Olson, E. R. Evidence that a nucleotide sequence, ‘boxA,’ is involved in the action of the NusA protein. Cell 34, 143–149 (1983).

    Article  CAS  PubMed  Google Scholar 

  31. Friedman, D. I., Olson, E. R., Johnson, L. L., Alessi, D. & Craven, M. G. Transcription-dependent competition for a host factor: the function and optimal sequence of the phage lambda boxA transcription antitermination signal. Genes Dev. 4, 2210–2222 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Liu, B. & Steitz, T. A. Structural insights into NusG regulating transcription elongation. Nucleic Acids Res. 45, 968–974 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Martinez-Rucobo, F. W., Sainsbury, S., Cheung, A. C. M. & Cramer, P. Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity. EMBO J. 30, 1302–1310 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burmann, B. M. et al. A NusE:NusG complex links transcription and translation. Science 328, 501–504 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Sullivan, S. L., Ward, D. F. & Gottesman, M. E. Effect of Escherichia coli nusG function on lambda N-mediated transcription antitermination. J. Bacteriol. 174, 1339–1344 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kuznedelov, K., Korzheva, N., Mustaev, A. & Severinov, K. Structure-based analysis of RNA polymerase function: the largest subunit's rudder contributes critically to elongation complex stability and is not involved in the maintenance of RNA–DNA hybrid length. EMBO J. 21, 1369–1378 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gusarov, I. & Nudler, E. Control of intrinsic transcription termination by N and NusA: the basic mechanisms. Cell 107, 437–449 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Parks, A. R. et al. Bacteriophage lambda N protein inhibits transcription slippage by Escherichia coli RNA polymerase. Nucleic Acids Res. 42, 5823–5829 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mishra, S. & Sen, R. N protein from lambdoid phages transforms NusA into an antiterminator by modulating NusA–RNA polymerase flap domain interactions. Nucleic Acids Res. 43, 5744–5758 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cheeran, A. et al. Escherichia coli RNA polymerase mutations located near the upstream edge of an RNA:DNA hybrid and the beginning of the RNA-exit channel are defective for transcription antitermination by the N protein from lambdoid phage H-19B. J. Mol. Biol. 352, 28–43 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Georgopoulos, C. P. Bacterial mutants in which gene N function of bacteriophage lambda is blocked have an altered RNA polymerase. Proc. Natl Acad. Sci. USA 68, 2977–2981 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jin, D. J. et al. Effects of rifampicin resistant rpoB mutations on antitermination and interaction with nusA in Escherichia coli. J. Mol. Biol. 204, 247–261 (1988).

    Article  CAS  PubMed  Google Scholar 

  43. Cheeran, A., Kolli, N. R. & Sen, R. The site of action of the antiterminator protein N from the lambdoid phage H-19B. J. Biol. Chem. 282, 30997–31007 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Murakami, K. S. X-ray crystal structure of Escherichia coli RNA polymerase sigma70 holoenzyme. J. Biol. Chem. 288, 9126–9134 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Toulokhonov, I., Artsimovitch, I. & Landick, R. Allosteric control of RNA polymerase by a site that contacts nascent RNA hairpins. Science 292, 730–733 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Ha, K. S., Toulokhonov, I., Vassylyev, D. G. & Landick, R. The NusA N-terminal domain is necessary and sufficient for enhancement of transcriptional pausing via interaction with the RNA exit channel of RNA polymerase. J. Mol. Biol. 401, 708–725 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rees, W. A., Weitzel, S. E., Yager, T. D., Das, A. & von Hippel, P. H. Bacteriophage lambda N protein alone can induce transcription antitermination in vitro. Proc. Natl Acad. Sci. USA 93, 342–346 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Drogemuller, J. et al. Determination of RNA polymerase binding surfaces of transcription factors by NMR spectroscopy. Sci. Rep. 5, 16428 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kolb, K. E., Hein, P. P. & Landick, R. Antisense oligonucleotide-stimulated transcriptional pausing reveals RNA exit channel specificity of RNA polymerase and mechanistic contributions of NusA and rfaH. J. Biol. Chem. 289, 1151–1163 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Beuth, B., Pennell, S., Arnvig, K. B., Martin, S. R. & Taylor, I. A. Structure of a Mycobacterium tuberculosis NusA–RNA complex. EMBO J. 24, 3576–3587 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Artsimovitch, I., Svetlov, V., Murakami, K. S. & Landick, R. Co-overexpression of Escherichia coli RNA polymerase subunits allows isolation and analysis of mutant enzymes lacking lineage-specific sequence insertions. J. Biol. Chem. 278, 12344–12355 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Studier, F. W. Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Kyzer, S., Ha, K. S., Landick, R. & Palangat, M. Direct versus limited-step reconstitution reveals key features of an RNA hairpin-stabilized paused transcription complex. J. Biol. Chem. 282, 19020–19028 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Belogurov, G. A. et al. Structural basis for converting a general transcription factor into an operon-specific virulence regulator. Mol. Cell 26, 117–129 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Easton, L. E., Shibata, Y. & Lukavsky, P. J. Rapid, nondenaturing RNA purification using weak anion-exchange fast performance liquid chromatography. RNA 16, 647–653 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McKenna, S. A. et al. Purification and characterization of transcribed RNAs using gel filtration chromatography. Nat. Protoc. 2, 3270–3277 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Kao, C., Zheng, M. & Rudisser, S. A simple and efficient method to reduce nontemplated nucleotide addition at the 3 terminus of RNAs transcribed by T7 RNA polymerase. RNA 5, 1268–1272 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sherlin, L. D. et al. Chemical and enzymatic synthesis of tRNAs for high-throughput crystallization. RNA 7, 1671–1678 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Rao, R. N. Construction and properties of plasmid pKC30, a pBR322 derivative containing the pL-N region of phage lambda. Gene 31, 247–250 (1984).

    Article  CAS  PubMed  Google Scholar 

  60. Artsimovitch, I. & Henkin, T. M. In vitro approaches to analysis of transcription termination. Methods 47, 37–43 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shin, D. H. et al. Crystal structure of NusA from Thermotoga maritima and functional implication of the N-terminal domain. Biochemistry 42, 13429–13437 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. McCoy, A. J. Solving structures of protein complexes by molecular replacement with phaser. Acta Crystallogr. D 63, 32–41 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D 68, 352–367 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schroder, G. F., Levitt, M. & Brunger, A. T. Deformable elastic network refinement for low-resolution macromolecular crystallography. Acta Crystallogr. D 70, 2241–2255 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Vassylyev, D. G., Vassylyeva, M. N., Perederina, A., Tahirov, T. H. & Artsimovitch, I. Structural basis for transcription elongation by bacterial RNA polymerase. Nature 448, 157–162 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Vassylyev, D. G. et al. Structural basis for substrate loading in bacterial RNA polymerase. Nature 448, 163–168 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Westover, K. D., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: separation of RNA from DNA by RNA polymerase II. Science 303, 1014–1016 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Westover, K. D., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: nucleotide selection by rotation in the RNA polymerase II active center. Cell 119, 481–489 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Kettenberger, H., Armache, K. J. & Cramer, P. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol. Cell 16, 955–965 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Suloway, C. et al. Automated molecular microscopy: the new leginon system. J. Struct. Biol. 151, 41–60 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).

    Article  PubMed  Google Scholar 

  74. Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Yang, Z., Fang, J., Chittuluru, J., Asturias, F. J. & Penczek, P. A. Iterative stable alignment and clustering of 2D transmission electron microscope images. Structure 20, 237–247 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Penczek, P. A. & Asturias, F. J. Ab initio cryo-EM structure determination as a validation problem. Proc. IEEE Int. Conf. Image Processing (ICIP) 2014, 2090–2094 (2014).

    Google Scholar 

  77. Cheng, Y., Grigorieff, N., Penczek, P. A. & Walz, T. A primer to single-particle cryo-electron microscopy. Cell 161, 438–449 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hohn, M. et al. SPARX, a new environment for cryo-EM image processing. J. Struct. Biol. 157, 47–55 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584–590 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Scheres, S. H. Semi-automated selection of cryo-EM particles in RELION-1.3. J. Struct. Biol. 189, 114–122 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bharat, T. A., Russo, C. J., Lowe, J., Passmore, L. A. & Scheres, S. H. Advances in single-particle electron cryomicroscopy structure determination applied to sub-tomogram averaging. Structure 23, 1743–1753 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Frank, J., Shimkin, B. & Dowse, H. Spider—a modular software system for electron image-processing. Ultramicroscopy 6, 343–357 (1981).

    Article  Google Scholar 

  84. Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Liu, B., Zuo, Y. & Steitz, T. A. Structural basis for transcription reactivation by RapA. Proc. Natl Acad. Sci. USA 112, 2006–2010 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bernecky, C., Herzog, F., Baumeister, W., Plitzko, J. M. & Cramer, P. Structure of transcribing mammalian RNA polymerase II. Nature 529, 551–554 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Mooney, R. A., Schweimer, K., Rosch, P., Gottesman, M. & Landick, R. Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators. J. Mol. Biol. 391, 341–358 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Schmidt, C. & Urlaub, H. iTRAQ-labeling of in-gel digested proteins for relative quantification. Methods Mol. Biol. 564, 207–226 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Leitner, A., Walzthoeni, T. & Aebersold, R. Lysine-specific chemical cross-linking of protein complexes and identification of cross-linking sites using LC-MS/MS and the xQuest/xProphet software pipeline. Nat. Protoc. 9, 120–137 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Yang, B. et al. Identification of cross-linked peptides from complex samples. Nat. Methods 9, 904–906 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank C. Alings (Freie Universität Berlin) for help with crystallization, I. Artsimovitch (Ohio State University) for plasmids pVS-10 (T7P-α-β-β′His6-ω) and pIA1127 (T7P-His6-TEV-σ70), used for RNAP production, and M. Gottesman (New York University) for plasmid pKC30, used in transcription assays. The authors acknowledge access to beamlines of the BESSY II storage ring (Berlin, Germany) via the Joint Berlin MX-Laboratory sponsored by the Helmholtz Zentrum Berlin für Materialien und Energie, the Freie Universität Berlin, the Humboldt-Universität zu Berlin, the Max-Delbrück-Centrum and the Leibniz-Institut für Molekulare Pharmakologie and to beamline 14–1 at the Petra III storage ring (EMBL, Hamburg, Germany). The authors acknowledge access to the resources of the North-German Supercomputing Alliance (HLRN). This work was supported by the Deutsche Forschungsgemeinschaft (SFB 740 to T.M., C.M.S. and M.C.W. and grant WA 1126/5-1 to M.C.W.). K.F.S. was supported by a Dahlem International Network PostDoc grant from Freie Universität Berlin. E.B. holds a Freigeist Fellowship from the Volkswagen Foundation and acknowledges continuing support from the Caesar Foundation.

Author information

Authors and Affiliations

Authors

Contributions

N.S., F.K., E.A., K.F.S., O.D., Y.-H.H., C.-T.L., B.L., E.B., J.B., T.M., J.L. and G.W. performed the experiments. All authors contributed to analysis of the data and interpretation of the results. H.U., C.M.T.S. and M.C.W. supervised the studies. N.S. and M.C.W. wrote the manuscript.

Corresponding author

Correspondence to Markus C. Wahl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Discussion, Supplementary Figures 1 and 2, Supplementary Tables 1 and 2, Supplementary References. (PDF 1890 kb)

Supplementary Table 3

Chemical CX-MS of a λN-based transcription antitermination complex (TAC). (XLSX 39 kb)

Supplementary Table 4

Chemical CX-MS of a transcription elongation complex (TEC) lacking λN. (XLSX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Said, N., Krupp, F., Anedchenko, E. et al. Structural basis for λN-dependent processive transcription antitermination. Nat Microbiol 2, 17062 (2017). https://doi.org/10.1038/nmicrobiol.2017.62

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2017.62

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing