Article

Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection

  • Nature Microbiology 2, Article number: 17037 (2017)
  • doi:10.1038/nmicrobiol.2017.37
  • Download Citation
Received:
Accepted:
Published online:

Abstract

During the last few decades, the global incidence of dengue virus (DENV) has increased dramatically, and it is now endemic in more than 100 countries. To establish a productive infection in humans, DENV uses different strategies to inhibit or avoid the host innate immune system. Several DENV proteins have been shown to strategically target crucial components of the type I interferon system. Here, we report that the DENV NS2B protease cofactor targets the DNA sensor cyclic GMP-AMP synthase (cGAS) for lysosomal degradation to avoid the detection of mitochondrial DNA during infection. Such degradation subsequently results in the inhibition of type I interferon production in the infected cell. Our data demonstrate a mechanism by which cGAS senses cellular damage upon DENV infection.

  • Subscribe to Nature Microbiology for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    et al. The dengue virus conceals double-stranded RNA in the intracellular membrane to escape from an interferon response. Sci. Rep. 4, 7395 (2014).

  2. 2.

    & Delayed cytosolic exposure of Japanese encephalitis virus double-stranded RNA impedes interferon activation and enhances viral dissemination in porcine cells. J. Virol. 85, 6736–6749 (2011).

  3. 3.

    , & Cytosolic sensing of viruses. Immunity 38, 855–869 (2013).

  4. 4.

    et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013).

  5. 5.

    et al. Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 5, 365–375 (2009).

  6. 6.

    , , & Inhibition of interferon signaling by dengue virus. Proc. Natl Acad. Sci. USA 100, 14333–14338 (2003).

  7. 7.

    , , & NS5 of dengue virus mediates STAT2 binding and degradation. J. Virol. 83, 5408–5418 (2009).

  8. 8.

    , & Innate immunity evasion by dengue virus. Viruses 4, 397–413 (2012).

  9. 9.

    , , , & Cyclic GMP–AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

  10. 10.

    et al. DENV inhibits type I IFN production in infected cells by cleaving human STING. PLoS Pathog. 8, e1002934 (2012).

  11. 11.

    et al. Dengue virus targets the adaptor protein MITA to subvert host innate immunity. PLoS Pathog. 8, e1002780 (2012).

  12. 12.

    , , , & Dengue virus inhibits the production of type I interferon in primary human dendritic cells. J. Virol. 84, 4845–4850 (2010).

  13. 13.

    et al. Inhibition of the type I interferon response in human dendritic cells by dengue virus infection requires a catalytically active NS2B3 complex. J. Virol. 84, 9760–9774 (2010).

  14. 14.

    et al. Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. J. Virol. 79, 8004–8013 (2005).

  15. 15.

    et al. Influenza virus evades innate and adaptive immunity via the NS1 protein. J. Virol. 80, 6295–6304 (2006).

  16. 16.

    et al. Modified vaccinia virus Ankara triggers type I IFN production in murine conventional dendritic cells via a cGAS/STING-mediated cytosolic DNA-sensing pathway. PLoS Pathog. 10, e1003989 (2014).

  17. 17.

    et al. The adaptor protein MITA links virus sensing receptors to IRF3 transcription factor activation. Immunity 29, 538–550 (2008).

  18. 18.

    et al. Cyclic GMP–AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341, 903–906 (2013).

  19. 19.

    et al. Structural mechanism of cytosolic DNA sensing by cGAS. Nature 498, 332–337 (2013).

  20. 20.

    et al. Pivotal roles of cGAS–cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341, 1390–1394 (2013).

  21. 21.

    et al. Functional profiling of recombinant NS3 proteases from all four serotypes of dengue virus using tetrapeptide and octapeptide substrate libraries. J. Biol. Chem. 280, 28766–28774 (2005).

  22. 22.

    & Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe 8, 422–432 (2010).

  23. 23.

    , , & Inhibition of autophagy with 3-methyladenine results in impaired turnover of lysosomes and accumulation of lipofuscin-like material. Eur. J. Cell Biol. 83, 583–590 (2004).

  24. 24.

    , , & Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity. Cell Rep. 3, 1362–1368 (2013).

  25. 25.

    & A phosphomimetic-based mechanism of dengue virus to antagonize innate immunity. Nat. Immunol. 17, 523–530 (2016).

  26. 26.

    Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 505, 691–695 (2013).

  27. 27.

    , , , & Expression of dengue ApoptoM sequence results in disruption of mitochondrial potential and caspase activation. Biochimie 85, 789–793 (2003).

  28. 28.

    et al. Mitochondrial and bioenergetic dysfunction in human hepatic cells infected with dengue 2 virus. Biochim. Biophys. Acta 1772, 1158–1166 (2007).

  29. 29.

    , & Induction of p53-dependent and mitochondria-mediated cell death pathway by dengue virus infection of human and animal cells. Microbes Infect. 10, 1124–1132 (2008).

  30. 30.

    , & Adenovirus detection by the cGAS/STING/TBK1 DNA sensing cascade. J. Virol. 88, 974–981 (2014).

  31. 31.

    et al. DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity 42, 332–343 (2015).

  32. 32.

    et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553–557 (2015).

  33. 33.

    et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472, 481–485 (2011).

  34. 34.

    & Endoplasmic reticulum–mitochondria contacts: function of the junction. Nat. Rev. Mol. Cell Biol. 13, 607–625 (2012).

  35. 35.

    et al. Dengue virus impairs mitochondrial fusion by cleaving mitofusins. PLoS Pathog. 11, e1005350 (2015).

  36. 36.

    et al. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503, 530–534 (2013).

  37. 37.

    et al. Modulation of dengue virus infection in human cells by alpha, beta, and gamma interferons. J. Virol. 74, 4957–4966 (2000).

  38. 38.

    , , , & Infection of human cells by dengue virus is modulated by different cell types and viral strains. J. Virol. 74, 7814–7823 (2000).

  39. 39.

    et al. A proline-rich N-terminal region of the dengue virus NS3 is crucial for infectious particle production. J. Virol. 90, 5451–5461 (2016).

  40. 40.

    , , , & Subcellular localizations of RIG-I, TRIM25, and MAVS complexes. J. Virol. 91, e01155-16 (2017).

  41. 41.

    et al. GENCODE: the reference human genome annotation for the ENCODE project. Genome Res. 22, 1760–1774 (2012).

  42. 42.

    & Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinformatics 13, 238 (2012).

  43. 43.

    et al. Stable heteroplasmy at the single-cell level is facilitated by intercellular exchange of mtDNA. Nucleic Acids Res. 43, 2177–2187 (2015).

Download references

Acknowledgements

The authors thank A. Gamarnik and J. Ashour for critical discussions and input, R. Fenutria-Aumesquet for help with the statistical analysis and R. Sebra and G. Deikus for DNA sequencing. This work was supported by NIH/NIAID grants R01AI073450 and 1R21AI116022 (to A.F.-S.), 1U19AI118610 (to A.F.-S. and A.G.-S.) and a DARPA (Prophecy) grant HR0011-11-C-0094 (to A.F.-S.). J.P.-S. is supported in part by PREP grant R25GM64118 from the NIH/NIGMS. L.C.F.M. is supported by NIH-NIGMS grant R01 GM113886. V.S. is partially supported by NIH-NIAID grants R01 AI089246 and P01 AI090935. C.F.B. is supported by NIH/NIAID grant no. AI109945.

Author information

Author notes

    • Priya Luthra
    •  & Christopher F. Basler

    Present address: Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30303, USA.

Affiliations

  1. Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA

    • Sebastian Aguirre
    • , Priya Luthra
    • , Maria T. Sanchez-Aparicio
    • , Ana M. Maestre
    • , Jenish Patel
    • , Francise Lamothe
    • , Anthony C. Fredericks
    • , Shashank Tripathi
    • , Tongtong Zhu
    • , Jessica Pintado-Silva
    • , Laurence G. Webb
    • , Dabeiba Bernal-Rubio
    • , Viviana Simon
    • , Christopher F. Basler
    • , Lubbertus C. F. Mulder
    • , Adolfo García-Sastre
    •  & Ana Fernandez-Sesma
  2. Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA

    • Maria T. Sanchez-Aparicio
    • , Jenish Patel
    • , Shashank Tripathi
    • , Viviana Simon
    • , Lubbertus C. F. Mulder
    •  & Adolfo García-Sastre
  3. Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA

    • Jenish Patel
    • , Anthony C. Fredericks
    • , Tongtong Zhu
    • , Jessica Pintado-Silva
    • , Laurence G. Webb
    •  & Ana Fernandez-Sesma
  4. Tisch Cancer Institute, Division of Hematology and Medical Oncology, Department of Medicine, Department of Pathology and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA

    • Alexander Solovyov
    •  & Benjamin Greenbaum
  5. Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA

    • Viviana Simon
    • , Adolfo García-Sastre
    •  & Ana Fernandez-Sesma

Authors

  1. Search for Sebastian Aguirre in:

  2. Search for Priya Luthra in:

  3. Search for Maria T. Sanchez-Aparicio in:

  4. Search for Ana M. Maestre in:

  5. Search for Jenish Patel in:

  6. Search for Francise Lamothe in:

  7. Search for Anthony C. Fredericks in:

  8. Search for Shashank Tripathi in:

  9. Search for Tongtong Zhu in:

  10. Search for Jessica Pintado-Silva in:

  11. Search for Laurence G. Webb in:

  12. Search for Dabeiba Bernal-Rubio in:

  13. Search for Alexander Solovyov in:

  14. Search for Benjamin Greenbaum in:

  15. Search for Viviana Simon in:

  16. Search for Christopher F. Basler in:

  17. Search for Lubbertus C. F. Mulder in:

  18. Search for Adolfo García-Sastre in:

  19. Search for Ana Fernandez-Sesma in:

Contributions

S.A. and A.F.-S. conceived and designed the experiments. S.A., P.L., M.T.S.-A., A.M.M., J.P., F.L., T.Z., J.P.-S. and L.G.W. performed the experiments. A.C.F., S.T., D.B.-R., L.C.F.M., V.S., C.F.B. and A.G.-S. contributed reagents, materials and analysis tools for experiments. A.S. and B.G. carried out SMRT sequencing data analysis. S.A. and A.F.-S. analysed the data. S.A. and A.F.-S. wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Sebastian Aguirre or Ana Fernandez-Sesma.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Figures 1–6.