Review Article

Drug resistance in eukaryotic microorganisms

  • Nature Microbiology 1, Article number: 16092 (2016)
  • doi:10.1038/nmicrobiol.2016.92
  • Download Citation
Published online:

Abstract

Eukaryotic microbial pathogens are major contributors to illness and death globally. Although much of their impact can be controlled by drug therapy as with prokaryotic microorganisms, the emergence of drug resistance has threatened these treatment efforts. Here, we discuss the challenges posed by eukaryotic microbial pathogens and how these are similar to, or differ from, the challenges of prokaryotic antibiotic resistance. The therapies used for several major eukaryotic microorganisms are then detailed, and the mechanisms that they have evolved to overcome these therapies are described. The rapid emergence of resistance and the restricted pipeline of new drug therapies pose considerable risks to global health and are particularly acute in the developing world. Nonetheless, we detail how the integration of new technology, biological understanding, epidemiology and evolutionary analysis can help sustain existing therapies, anticipate the emergence of resistance or optimize the deployment of new therapies.

  • Subscribe to Nature Microbiology for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    & Policy: an intergovernmental panel on antimicrobial resistance. Nature 509, 555–557 (2014).

  2. 2.

    , & Chemotherapy for second-stage human African trypanosomiasis. Cochrane. Database. Syst. Rev. 6, CD006201 (2013).

  3. 3.

    , & Prevalence and detection of counterfeit pharmaceuticals: a mini review. Ind. Eng. Chem. Res. 47, 585–590 (2008).

  4. 4.

    , , & Poor-quality antimalarial drugs in southeast Asia and sub-Saharan Africa. Lancet Infect. Dis. 12, 488–496 (2012).

  5. 5.

    , , & Antimicrobial resistance in humans, livestock and the wider environment. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140083 (2015).

  6. 6.

    , , & Azole resistance in Aspergillus fumigatus: can we retain the clinical use of mold-active antifungal azoles?. Clin. Infect. Dis. 62, 362–368 (2016).

  7. 7.

    Persister cells, dormancy and infectious disease. Nature Rev. Microbiol. 5, 48–56 (2007).

  8. 8.

    , & Microbial persistence and the road to drug resistance. Cell Host. Microbe 13, 632–642 (2013).

  9. 9.

    , & Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob. Agents Chemother. 50, 3839–3846 (2006).

  10. 10.

    , , , & Detailed comparison of Candida albicans and Candida glabrata biofilms under different conditions and their susceptibility to caspofungin and anidulafungin. J. Med. Microbiol. 60, 1261–1269 (2011).

  11. 11.

    , & Patients with long-term oral carriage harbor high-persister mutants of Candida albicans. Antimicrob. Agents Chemother. 54, 39–44 (2010).

  12. 12.

    , , & Bacterial persistence: a model of survival in changing environments. Genetics 169, 1807–1814 (2005).

  13. 13.

    et al. Transcriptional variation in the malaria parasite Plasmodium falciparum. Genome Res. 22, 925–938 (2012).

  14. 14.

    , , , & Persister cells and tolerance to antimicrobials. FEMS Microbiol. Lett. 230, 13–18 (2004).

  15. 15.

    & Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis. 38, 864–870 (2004).

  16. 16.

    , & Monitoring and deterring drug-resistant malaria in the era of combination therapy. Am. J. Trop. Med. Hyg. 77, 160–169 (2007).

  17. 17.

    The prevention of antimalarial drug resistance. Pharmacol. Ther. 47, 499–508 (1990).

  18. 18.

    & Strategies for the prevention of antimalarial drug resistance: rationale for combination chemotherapy for malaria. Parasitol. Today 12, 399–401 (1996).

  19. 19.

    et al. Nifurtimox-eflornithine combination therapy for second-stage African Trypanosoma brucei gambiense trypanosomiasis: a multicentre, randomised, phase III, non-inferiority trial. Lancet 374, 56–64 (2009).

  20. 20.

    & Artemisinin-based combination treatment of falciparum malaria. Am. J. Trop. Med. Hyg. 77, 181–192 (2007).

  21. 21.

    , & New vaccines for the world's poorest people. Annu. Rev. Med. 67, 405–417 (2015).

  22. 22.

    & Vaccines to prevent leishmaniasis. Clin. Transl. Immunology 3 e13 (2014).

  23. 23.

    Development of vaccines for Candida albicans : fighting a skilled transformer. Nature Rev. Microbiol. 11, 884–891 (2013).

  24. 24.

    & Chloroquine-resistant malaria. J. Infect. Dis 184, 770–776 (2001).

  25. 25.

    , , & Epidemiology of drug-resistant malaria. Lancet Infect. Dis. 2, 209–218 (2002).

  26. 26.

    & Genetics of chloroquine-resistant malaria: a haplotypic view. Mem. Inst. Oswaldo Cruz 108, 947–961 (2013).

  27. 27.

    et al. Mutations in the P-falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol. Cell 6, 861–871 (2000).

  28. 28.

    et al. Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, enlarge the parasite's food vacuole and alter drug sensitivities. Sci. Rep. 5, 14552 (2015).

  29. 29.

    et al. Evidence of artemisinin-resistant malaria in western Cambodia. N. Engl. J. Med. 359, 2619–2620 (2008).

  30. 30.

    et al. Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study. Lancet Infect. Dis. 12, 851–858 (2012).

  31. 31.

    et al. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 361, 455–467 (2009).

  32. 32.

    et al. Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science 347, 431–435 (2015).

  33. 33.

    et al. Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia. Nature Genet. 45, 648–655 (2013).

  34. 34.

    et al. Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia. Proc. Natl Acad. Sci. USA 110, 240–245 (2013).

  35. 35.

    et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505, 50–55 (2014).

  36. 36.

    et al. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nature Biotechnol. 32, 819–821 (2014).

  37. 37.

    et al. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science 347, 428–431 (2015).

  38. 38.

    MalariaGEN Plasmodium falciparum Community Project. Genomic epidemiology of artemisinin resistant malaria. Elife 5, e08714 (2016).

  39. 39.

    et al. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature 520, 683–687 (2015).

  40. 40.

    , , , & Combinatorial genetic modeling of pfcrt-mediated drug resistance evolution in Plasmodium falciparum. Mol. Biol. Evol. (2016).

  41. 41.

    et al. In vivo selection of Plasmodium falciparum parasites carrying the chloroquine-susceptible pfcrt K76 allele after treatment with artemether-lumefantrine in Africa. J. Infect. Dis 199, 750–757 (2009).

  42. 42.

    et al. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether-lumefantrine and artesunate-amodiaquine. Am. J. Trop. Med. Hyg. 91, 833–843 (2014).

  43. 43.

    et al. Dihydroartemisinin-piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study. Lancet Infect. Dis. 16, 357–365 (2016).

  44. 44.

    , , , & The journey towards elimination of gambiense human African trypanosomiasis: not far, nor easy. Parasitology 141, 748–760 (2014).

  45. 45.

    , , , & Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. Science 227, 1485–1487 (1985).

  46. 46.

    , & Trypanothione is the primary target for arsenical drugs against African trypanosomes. Proc. Natl Acad. Sci. USA 86, 2607–2611 (1989).

  47. 47.

    et al. Melarsoprol refractory T.b. gambiense from Omugo, north-western Uganda. Trop. Med. Int. Health 6, 407–411 (2001).

  48. 48.

    et al. High failure rates of melarsoprol for sleeping sickness, Democratic Republic of Congo. Emerg. Infect. Dis. 14, 966–967 (2008).

  49. 49.

    et al. Trypanosoma brucei aquaglyceroporin 2 is a high-affinity transporter for pentamidine and melaminophenyl arsenic drugs and the main genetic determinant of resistance to these drugs. J. Antimicrob. Chemother. 69, 651–663 (2014).

  50. 50.

    et al. Pentamidine is not a permeant but a nanomolar inhibitor of the Trypanosoma brucei aquaglyceroporin-2. PLoS Pathog. 12 e1005436 (2016).

  51. 51.

    & Specific chemotherapy of Chagas disease: controversies and advances. Trends Parasitol. 19, 495–501 (2003).

  52. 52.

    et al. Randomized trial of posaconazole and benznidazole for chronic Chagas' disease. N. Engl. J. Med. 370, 1899–1908 (2014).

  53. 53.

    et al. Randomized trial of benznidazole for chronic Chagas' cardiomyopathy. N. Engl. J. Med. 373, 1295–1306 (2015).

  54. 54.

    Chagas disease drug discovery: toward a new era. J. Biomol. Screen. 20, 22–35 (2015).

  55. 55.

    Recent clinical trials for the etiological treatment of chronic chagas disease: advances, challenges and perspectives. J. Euk. Microbiol. 62, 149–156 (2015).

  56. 56.

    & Leishmaniasis: clinical syndromes and treatment. QJM 107, 7–14 (2014).

  57. 57.

    & An update on pharmacotherapy for leishmaniasis. Expert Opin. Pharmacother. 16, 237–252 (2015).

  58. 58.

    World Health Organization. Control of the Leishmaniases Technical Report Series 949 1–186 (World Health Organization, 2010).

  59. 59.

    et al. Treatment options for visceral leishmaniasis: a systematic review of clinical studies done in India, 1980–2004. Lancet Infect. Dis. 5, 763–774 (2005).

  60. 60.

    et al. Visceral leishmaniasis and arsenic: an ancient poison contributing to antimonial treatment failure in the Indian subcontinent? PLoS Negl. Trop. Dis. 5 e1227 (2011).

  61. 61.

    et al. High level arsenite resistance in Leishmania tarentolae is mediated by an active extrusion system. Mol. Biochem. Parasitol. 67, 49–57 (1994).

  62. 62.

    , , , & Chronic exposure to arsenic in drinking water can lead to resistance to antimonial drugs in a mouse model of visceral leishmaniasis. Proc. Natl Acad. Sci. USA 110, 19932–19937 (2013).

  63. 63.

    et al. Arsenic exposure and outcomes of antimonial treatment in visceral leishmaniasis patients in Bihar, India: a retrospective cohort study. PLoS Negl. Trop. Dis. 9 e0003518 (2015).

  64. 64.

    , , & Novel intracellular Sb-V reducing activity correlates with antimony susceptibility in Leishmania donovani. J. Biol. Chem. 276, 3971–3976 (2001).

  65. 65.

    et al. Gene expression analysis of the mechanism of natural Sb(V) resistance in Leishmania donovani isolates from Nepal. Antimicrob. Agents Chemother. 49, 4616–4621 (2005).

  66. 66.

    et al. Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background. PLoS Negl. Trop. Dis. 6 e1514 (2012).

  67. 67.

    et al. Proteomic and genomic analyses of antimony resistant Leishmania infantum mutant. J. Parasitol. Res. 8 e81899 (2013).

  68. 68.

    , , , & Differential expression of proteins in antimony-susceptible and -resistant isolates of Leishmania donovani. Mol. Biochem. Parasitol. 179, 91–99 (2011).

  69. 69.

    , , , & Leishmania TDR1 structure, a unique trimeric glutathione transferase capable of deglutathionylation and antimonial prodrug activation. Proc. Natl Acad. Sci. USA 109, 11693–11698 (2012).

  70. 70.

    , , , & Leishmania major LmACR2 is a pentavalent antimony reductase that confers sensitivity to the drug Pentostam. J. Biol. Chem. 279, 37445–37451 (2004).

  71. 71.

    et al. Generation of an aquaglyceroporin AQP1 null mutant in Leishmania major. Mol. Biochem. Parasitol. 201, 108–111 (2015).

  72. 72.

    , , , & Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania. Mol. Microbiol. 57, 1690–1699 (2005).

  73. 73.

    et al. Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J. Biol. Chem. 279, 31010–31017 (2004).

  74. 74.

    , , , & Assessing aquaglyceroporin gene status and expression profile in antimony-susceptible and -resistant clinical isolates of Leishmania donovani from India. J. Antimicrob. Chemother. 65, 496–507 (2010).

  75. 75.

    , , & Role of aquaglyceroporin (AQP1) gene and drug uptake in antimony-resistant clinical isolates of Leishmania donovani. Am. J. Trop. Med. Hyg. 79, 69–75 (2008).

  76. 76.

    et al. Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res. 21, 2129–2142 (2011).

  77. 77.

    , , , & Parasexuality and mosaic aneuploidy in Leishmania: alternative genetics. Trends Parasitol. 30, 429–435 (2014).

  78. 78.

    et al. A multiplatform metabolomic approach to the basis of antimonial action and resistance in Leishmania infantum. J. Parasitol. Res. 10 e0130675 (2015).

  79. 79.

    et al. Metabolic adaptations of Leishmania donovani in relation to differentiation, drug resistance, and drug pressure. Mol. Microbiol. 90, 428–442 (2013).

  80. 80.

    , , , & An ATP-dependent As(III)-glutathione transport system in membrane vesicles of Leishmania tarentolae. Proc. Natl Acad. Sci. USA 93, 2192–2197 (1996).

  81. 81.

    , , & A new ABC half-transporter in Leishmania major is involved in resistance to antimony. Antimicrob. Agents Chemother. 57, 3719–3730 (2013).

  82. 82.

    et al. Efficacy of miltefosine in the treatment of visceral leishmaniasis in India after a decade of use. Clin. Infect. Dis. 55, 543–550 (2012).

  83. 83.

    et al. Increasing failure of miltefosine in the treatment of Kala-azar in Nepal and the potential role of parasite drug resistance, reinfection, or noncompliance. Clin. Infect. Dis. 56, 1530–1538 (2013).

  84. 84.

    et al. Characterisation of Leishmania donovani promastigotes resistant to hexadecylphosphocholine (miltefosine). Int. J. Antimicrob. Ag. 22, 380–387 (2003).

  85. 85.

    , , & Comparative transcript expression analysis of miltefosine-sensitive and miltefosine-resistant Leishmania donovani. Parasitol. Res. 113, 1171–1184 (2014).

  86. 86.

    , & Update on antifungal drug resistance. Curr. Clin. Microbiol. Rep. 2, 84–95 (2015).

  87. 87.

    & Infectious disease. How to bolster the antifungal pipeline. Science 347, 1414–1416 (2015).

  88. 88.

    et al. A multistep voriconazole-related phototoxic pathway may lead to skin carcinoma: results from a French nationwide study. Clin. Infect. Dis. 57 e182–e188 (2013).

  89. 89.

    & Coping with stress and the emergence of multidrug resistance in fungi. PLoS Pathog. 11, e1004668 (2015).

  90. 90.

    , , , & Multi-triazole-resistant Aspergillus fumigatus infections in Australia. Mycoses 58, 350–355 (2015).

  91. 91.

    et al. Prospective multicenter international surveillance of azole resistance in Aspergillus fumigatus. Emerg. Infect. Dis 21, 1041–1044 (2015).

  92. 92.

    et al. The ever-evolving landscape of candidaemia in patients with acute leukaemia: non-susceptibility to caspofungin and multidrug resistance are associated with increased mortality. J. Antimicrob. Chemother. 70, 2362–2368 (2015).

  93. 93.

    , , & Emergence of azole-resistant Aspergillus fumigatus strains due to agricultural azole use creates an increasing threat to human health. PLoS Pathog. 9, e1003633 (2013).

  94. 94.

    , & Azole resistance in Aspergillus fumigatus: a growing public health concern. Curr. Opin. Infect. Dis 26, 493–500 (2013).

  95. 95.

    et al. Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus. J. Parasitol. Res. 7, e31801 (2012).

  96. 96.

    , & Azole resistance in Aspergillus fumigatus: a new challenge in the management of invasive aspergillosis?. Future. Microbiol. 6, 335–347 (2011).

  97. 97.

    et al. Genomic context of azole resistance mutations in Aspergillus fumigatus determined using whole-genome sequencing. mBio 6, e00536 (2015).

  98. 98.

    et al. Fks1 and Fks2 are functionally redundant but differentially regulated in Candida glabrata: implications for echinocandin resistance. Antimicrob. Agents Chemother. 56, 6304–6309 (2012).

  99. 99.

    et al. Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin. PLoS Pathog. 5, e1000532 (2009).

  100. 100.

    & Progress in antifungal susceptibility testing of Candida spp. by use of Clinical and Laboratory Standards Institute broth microdilution methods, 2010 to 2012. J. Clin. Microbiol. 50, 2846–2856 (2012).

  101. 101.

    et al. Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin. Infect. Dis. 56, 1724–1732 (2013).

  102. 102.

    et al. A multi-center, open-label trial to compare the efficacy and pharmacokinetics of Artemether-Lumefantrine in children with severe acute malnutrition versus children without severe acute malnutrition: study protocol for the MAL-NUT study. BMC Infect. Dis. 15, 228 (2015).

  103. 103.

    et al. Quantitative genome re-sequencing defines multiple mutations conferring chloroquine resistance in rodent malaria. BMC Genomics 13, 106 (2012).

  104. 104.

    et al. Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing. Nature 487, 375–379 (2012).

  105. 105.

    et al. A major genome region underlying artemisinin resistance in malaria. Science 336, 79–82 (2012).

  106. 106.

    et al. Chemical genomic profiling for antimalarial therapies, response signatures, and molecular targets. Science 333, 724–729 (2011).

  107. 107.

    et al. Genome-scale RNAi screens for high-throughput phenotyping in bloodstream-form African trypanosomes. Nature Protoc. 10, 106–133 (2015).

  108. 108.

    et al. High-throughput decoding of antitrypanosomal drug efficacy and resistance. Nature 482, 232–236 (2012).

  109. 109.

    , & Drug target identification using a trypanosome overexpression library. Antimicrob. Agents Chemother. 58, 6260–6264 (2014).

  110. 110.

    Functional analysis of drug resistance in Plasmodium falciparum in the post-genomic era. Int. J. Parasitol. 31, 871–878 (2001).

  111. 111.

    & Metabolomic-based strategies for anti-parasite drug discovery. J. Biomol. Screen. 20, 44–55 (2015).

  112. 112.

    et al. Parasites resistant to the antimalarial atovaquone fail to transmit by mosquitoes. Science 352, 349–353 (2016).

  113. 113.

    , , & Commit and transmit: molecular players in Plasmodium sexual development and zygote differentiation. Trends Parasitol. 31, 676–685 (2015).

  114. 114.

    The role of vector control in stopping the transmission of malaria: threats and opportunities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130431 (2014).

  115. 115.

    Southern Cone Initiative for the elimination of domestic populations of Triatoma infestans and the interruption of transfusional Chagas disease. Historical aspects, present situation, and perspectives. Mem. Inst. Oswaldo Cruz 102 (suppl. 1), 11–18 (2007).

  116. 116.

    & Priorities for the elimination of sleeping sickness. Adv. Parasitol. 79, 299–337 (2012).

  117. 117.

    , & The impact of Chagas disease control in Latin America: a review. Mem. Inst. Oswaldo Cruz 97, 603–612 (2002).

  118. 118.

    et al. Improving Sterile Insect Technique (SIT) for tsetse flies through research on their symbionts and pathogens. J. Invertebr. Pathol. 112 (suppl.), S2–S10 (2013).

  119. 119.

    et al. Current status and future challenges for controlling malaria with the sterile insect technique: technical and social perspectives. Acta Trop. 132 (suppl.), S130–S139 (2014).

  120. 120.

    , , & Ensuring transmission through dynamic host environments: host-pathogen interactions in Plasmodium sexual development. Curr. Opin. Microbiol. 26, 17–23 (2015).

  121. 121.

    & The social life of African trypanosomes. Trends Parasitol. 31, 490–498 (2015).

  122. 122.

    et al. Genome-wide dissection of the quorum sensing signalling pathway in Trypanosoma brucei. Nature 505, 681–685 (2014).

  123. 123.

    et al. Malaria-infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system. Cell Host. Microbe 13, 521–534 (2013).

  124. 124.

    et al. Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell 153, 1120–1133 (2013).

  125. 125.

    World Health Organization. Guidelines for the Treatment of Malaria 3rd edn, 1–316 (World Health Organization, 2015).

  126. 126.

    World Health Organization. WHO Model List of Essential Medicines 19th edn, 1–51 (World Health Organization, 2015).

  127. 127.

    World Health Organization. Rapid Advice: Diagnosis, Prevention and Management of Cryptococcal Disease in HIV-Infected Adults, Adolescents and Children 1–37 (World Health Organization, 2011).

  128. 128.

    & Management and diagnostic guidelines for fungal diseases in infectious diseases and clinical microbiology: critical appraisal. Clin. Microbiol. Infect. 19, 1115–1121 (2013).

  129. 129.

    & Invasive candidiasis. N. Engl. J. Med. 373, 1445–1456 (2015).

  130. 130.

    , , & PfCRT and its role in antimalarial drug resistance. Trends Parasitol. 28, 504–514 (2012).

  131. 131.

    et al. Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature 418, 320–323 (2002).

  132. 132.

    , & Trans stimulation provides evidence for a drug efflux carrier as the mechanism of chloroquine resistance in Plasmodium falciparum. Biochemistry 42, 9383–9394 (2003).

  133. 133.

    , , & Transporters as mediators of drug resistance in Plasmodium falciparum. Int. J. Parasitol. 40, 1109–1118 (2010).

  134. 134.

    et al. Dissecting the loci of low-level quinine resistance in malaria parasites. Mol. Microbiol. 52, 985–997 (2004).

  135. 135.

    et al. Identification of a mutant PfCRT-mediated chloroquine tolerance phenotype in Plasmodium falciparum. PLoS Pathog. 6, e1000887 (2010).

  136. 136.

    et al. Adaptive evolution of malaria parasites in French Guiana: reversal of chloroquine resistance by acquisition of a mutation in pfcrt. Proc. Natl Acad. Sci. USA 112, 11672–11677 (2015).

  137. 137.

    , & Genetic mapping of the chloroquine-resistance locus on Plasmodium falciparum chromosome 7. Proc. Natl Acad. Sci. USA 88, 3382–3386 (1991).

  138. 138.

    et al. Linkage disequilibrium between two chromosomally distinct loci associated with increased resistance to chloroquine in Plasmodium falciparum. Parasitology 121, 1–7 (2000).

  139. 139.

    , & Artemisinin and the antimalarial endoperoxides — from herbal remedy to targeted chemotherapy. Microbiol. Rev. 60, 301 (1996).

  140. 140.

    , , & Sulfadoxine resistance in the human malaria parasite Plasmodium falciparum is determined by mutations in dihydropteroate synthetase and an additional factor associated with folate utilization. Mol. Microbiol. 23, 979–986 (1997).

  141. 141.

    & The molecular basis of antifolate resistance in Plasmodium falciparum : looking beyond point mutations. Ann. N. Y. Acad. Sci. 1342, 10–18 (2015).

  142. 142.

    in Malaria: Parasite Biology, Pathogenesis, and Protection (ed. Sherman, I. W.) 317–330 (1998).

  143. 143.

    , , , & Atovaquone-proguanil resistance in imported falciparum malaria in a young child. Pediatr. Infect. Dis. J. 27, 567–569 (2008).

  144. 144.

    & Arsenical-resistant trypanosomes lack an unusual adenosine transporter. Nature 361, 173–176 (1993).

  145. 145.

    , , & A nucleoside transporter from Trypanosoma brucei involved in drug resistance. Science 285, 242–244 (1999).

  146. 146.

    et al. Aquaglyceroporin 2 controls susceptibility to melarsoprol and pentamidine in African trypanosomes. Proc. Natl Acad. Sci. USA 109, 10996–11001 (2012).

  147. 147.

    et al. Chimerization at the AQP2-AQP3 locus is the genetic basis of melarsoprol-pentamidine cross-resistance in clinical Trypanosoma brucei gambiense isolates. Int. J. Parasitol. Drugs Drug Resist. 5, 65–68 (2015).

  148. 148.

    et al. Melarsoprol sensitivity profile of Trypanosoma brucei gambiense isolates from cured and relapsed sleeping sickness patients from the Democratic Republic of the Congo. PLoS Negl. Trop. Dis. 8, e3212 (2014).

  149. 149.

    et al. Aquaporin 2 mutations in Trypanosoma brucei gambiense field isolates correlate with decreased susceptibility to pentamidine and melarsoprol. PLoS Negl. Trop. Dis. 7, e2475 (2013).

  150. 150.

    et al. Genotypic status of the TbAT1/P2 adenosine transporter of Trypanosoma brucei gambiense isolates from Northwestern Uganda following melarsoprol withdrawal. PLoS Negl. Trop. Dis. 3, e523 (2009).

  151. 151.

    et al. A molecular mechanism for eflornithine resistance in African trypanosomes. PLoS Pathog. 6, e1001204 (2010).

  152. 152.

    et al. Trypanosoma brucei eflornithine transporter AAT6 is a low-affinity low-selective transporter for neutral amino acids. Biochem. J. 463, 9–18 (2014).

  153. 153.

    , , , & A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proc. Natl Acad. Sci. USA 105, 5022–5027 (2008).

  154. 154.

    , & Nifurtimox activation by trypanosomal type I nitroreductases generates cytotoxic nitrile metabolites. J. Biol. Chem. 286, 13088–13095 (2011).

  155. 155.

    & Nitro drugs for the treatment of trypanosomatid diseases: past, present, and future prospects. Trends Parasitol. 30, 289–298 (2014).

  156. 156.

    et al. Cross-resistance to nitro drugs and implications for treatment of human African trypanosomiasis. Antimicrob. Agents Chemother. 54, 2893–2900 (2010).

  157. 157.

    et al. Nitroheterocyclic drug resistance mechanisms in Trypanosoma brucei. J. Antimicrob. Chemother. 71, 625–634 (2015).

  158. 158.

    et al. Benznidazole-resistance in Trypanosoma cruzi is a readily acquired trait that can arise independently in a single population. J. Infect. Dis. 206, 220–228 (2012).

  159. 159.

    , , , & Benznidazole biotransformation and multiple targets in Trypanosoma cruzi revealed by metabolomics. PLoS Negl. Trop. Dis. 8, e2844 (2014).

  160. 160.

    & Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation. Antimicrob. Agents Chemother. 56, 115–123 (2012).

  161. 161.

    et al. A novel ABCG-like transporter of Trypanosoma cruzi is involved in natural resistance to benznidazole. Mem. Inst. Oswaldo Cruz 110, 433–444 (2015).

  162. 162.

    et al. Deletion of copies of the gene encoding old yellow enzyme (TcOYE), a NAD(P)H flavin oxidoreductase, associates with in vitro-induced benznidazole resistance in Trypanosoma cruzi. Mol. Biochem. Parasitol. 146, 151–162 (2006).

  163. 163.

    et al. Proteomic analysis of Trypanosoma cruzi resistance to benznidazole. J. Proteome Res. 7, 2357–2367 (2008).

  164. 164.

    et al. A key role for old yellow enzyme in the metabolism of drugs by Trypanosoma cruzi. J. Exp. Med. 196, 1241–1251 (2002).

  165. 165.

    , & Dual action of antimonial drugs on thiol redox metabolism in the human pathogen Leishmania donovani. J. Biol. Chem. 279, 39925–39932 (2004).

  166. 166.

    , , & Molecular basis of antimony treatment in leishmaniasis. J. Med. Chem. 52, 2603–2612 (2009).

  167. 167.

    et al. Elevated levels of tryparedoxin peroxidase in antimony unresponsive Leishmania donovani field isolates. Mol. Biochem. Parasitol. 173, 162–164 (2010).

  168. 168.

    et al. Trypanothione overproduction and resistance to antimonials and arsenicals in Leishmania. Proc. Natl Acad. Sci. USA 93, 10383–10387 (1996).

  169. 169.

    , & Roles of trypanothione S-transferase and tryparedoxin peroxidase in resistance to antimonials. Antimicrob. Agents Chemother. 52, 1359–1365 (2008).

  170. 170.

    & Heavy metal resistance: a new role for P-glycoproteins in Leishmania. J. Biol. Chem. 266, 18427–18430 (1991).

  171. 171.

    et al. Role of ABC transporter MRPA, γ-glutamylcysteine synthetase and ornithine decarboxylase in natural antimony-resistant isolates of Leishmania donovani. J. Antimicrob. Chemother. 59, 204–211 (2007).

  172. 172.

    et al. Role of the ABC transporter MRPA (PGPA) in antimony resistance in Leishmania infantum axenic and intracellular amastigotes. Antimicrob. Agents Chemother. 49, 1988–1993 (2005).

  173. 173.

    , & The heat shock protein HSP70 and heat shock cognate protein HSC70 contribute to antimony tolerance in the protozoan parasite Leishmania. Cell Stress Chaperones 9, 294–303 (2004).

  174. 174.

    , , , & Paromomycin affects translation and vesicle-mediated trafficking as revealed by proteomics of paromomycin–susceptible–resistant Leishmania donovani. J. Parasitol. Res. 6, e26660 (2011).

  175. 175.

    , & Alteration of fatty acid and sterol metabolism in miltefosine-resistant Leishmania donovani promastigotes and consequences for drug-membrane interactions. Antimicrob. Agents Chemother. 49, 2677–2686 (2005).

  176. 176.

    , , , & Miltefosine afects lipid metabolism in Leishmania donovani promastigotes. Antimicrob. Agents Chemother. 51, 1425–1430 (2007).

  177. 177.

    et al. Untargeted metabolomic analysis of miltefosine action inLeishmania infantum reveals changes to the internal lipid metabolism. Int. J. Parasitol. Drugs Drug Resist. 4, 20–27 (2014).

  178. 178.

    , , & Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J. Antimicrob. Chemother. 67, 2576–2597 (2012).

  179. 179.

    , , & Functional cloning of the miltefosine transporter: a novel P-type phospholipid translocase from Leishmania involved in drug resistance. J. Biol. Chem. 278, 49965–49971 (2003).

  180. 180.

    , & Leishmania donovani resistance to miltefosine involves a defective inward translocation of the drug. Antimicrob. Agents Chemother. 47, 2397–2403 (2003).

  181. 181.

    et al. Multiple mutations in heterogeneous miltefosine-resistant Leishmania major population as determined by whole genome sequencing. PLoS Negl. Trop. Dis. 6, e1512 (2012).

  182. 182.

    , , & Phospholipid translocation and miltefosine potency require both L. donovani miltefosine transporter and the new protein LdRos3 in Leishmania parasites. J. Biol. Chem. 281, 23766–23775 (2006).

  183. 183.

    et al. Alkyl-lysophospholipid resistance in multidrug-resistant Leishmania tropica and chemosensitization by a novel P-glycoprotein-like transporter modulator. Antimicrob. Agents Chemother. 45, 2468–2474 (2001).

  184. 184.

    , , & Characterization of an ABCG-like transporter from the protozoan parasite Leishmania with a role in drug resistance and transbilayer lipid movement. Antimicrob. Agents Chemother. 52, 3573–3579 (2008).

  185. 185.

    et al. Multi-analytical platform metabolomic approach to study miltefosine mechanism of action and resistance in Leishmania. Anal. Bioanal. Chem. 406, 3459–3476 (2014).

  186. 186.

    et al. New insight into amphotericin B resistance in Aspergillus terreus. Antimicrob. Agents Chemother. 57, 1583–1588 (2013).

  187. 187.

    et al. Amphotericin primarily kills yeast by simply binding ergosterol. Proc. Natl Acad. Sci. USA 109, 2234–2239 (2012).

  188. 188.

    , & Antifungal agents: mechanisms of action. Trends Microbiol. 11, 272–279 (2003).

  189. 189.

    & Efflux pump proteins in antifungal resistance. Front Pharmacol. 5, 202 (2014).

  190. 190.

    , , & MFS multidrug transporters in pathogenic fungi: do they have real clinical impact?. Front Physiol 5, 197 (2014).

  191. 191.

    , , , & Mechanisms of antifungal drug resistance. Cold Spring Harb. Perspect. Med. 5, a019752 (2015).

  192. 192.

    et al. Gain-of-function mutations in UPC2 are a frequent cause of ERG11 upregulation in azole-resistant clinical isolates of Candida albicans. Eukaryot. Cell 11, 1289–1299 (2012).

  193. 193.

    et al. Efflux-mediated antifungal drug resistance. Clin. Microbiol. Rev. 22, 291–321, Table (2009).

  194. 194.

    & Aneuploidy and drug resistance in pathogenic fungi. PLoS Pathog. 8, e1003022 (2012).

  195. 195.

    , , , & An isochromosome confers drug resistance in vivo by amplification of two genes, ERG11 and TAC1. Mol. Microbiol. 68, 624–641 (2008).

  196. 196.

    , & Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313, 367–370 (2006).

  197. 197.

    et al. Inhibiting fungal multidrug resistance by disrupting an activator–mediator interaction. Nature 530, 485–489 (2016).

  198. 198.

    The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nature Rev. Microbiol. 6, 187–198 (2008).

  199. 199.

    & Characterisation of breakthrough invasive mycoses in echinocandin recipients: an evidence-based review. Int. J. Antimicrob. Agents 35, 211–218 (2010).

  200. 200.

    , & Antifungal resistance and new strategies to control fungal infections. Int. J. Microbiol. 2012, 713687 (2012).

Download references

Acknowledgements

This Review is a collaboration between the Wellcome Trust funded centres of Infectious Disease Research in Scotland (IDRIS). This comprises the Edinburgh University ‘Centre for Immunity, Infection and Evolution’ (Wellcome Trust grant reference 095831), Glasgow University ‘Wellcome Trust Centre for Molecular Parasitology’ (Wellcome Trust grant reference WT104111AIA), Dundee University Wellcome Trust strategic award in ‘Chemical Biology for Target Identification’ (Wellcome Trust grant reference 10502) and the Aberdeen University Wellcome Trust Strategic Award in ‘Medical Mycology and Fungal Immunology’ (Wellcome Trust grant reference 097377). Personal research support involved Wellcome Trust senior investigator awards to K.R.M. (Wellcome Trust grant reference 103740/Z/14/Z) and N.A.R.G. (Wellcome Trust grant reference 101873), and Wellcome Trust Principal Research fellowships to A.H.F. (Wellcome Trust grant reference 079838) and A.P.W. (Wellcome Trust grant reference 107046/Z/15/Z).

Author information

Affiliations

  1. Dundee Drug Discovery Unit, Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.

    • Alan H. Fairlamb
  2. Aberdeen Fungal Group, Wellcome Trust Strategic Award in Medical Mycology and Fungal Immunology, School of Medical Sciences, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK.

    • Neil A. R. Gow
  3. Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.

    • Keith R. Matthews
  4. Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical and Veterinary Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.

    • Andrew P. Waters

Authors

  1. Search for Alan H. Fairlamb in:

  2. Search for Neil A. R. Gow in:

  3. Search for Keith R. Matthews in:

  4. Search for Andrew P. Waters in:

Contributions

All authors contributed equally to the preparation of the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Keith R. Matthews.