Article

Uncovering oral Neisseria tropism and persistence using metagenomic sequencing

  • Nature Microbiology 1, Article number: 16070 (2016)
  • doi:10.1038/nmicrobiol.2016.70
  • Download Citation
Received:
Accepted:
Published online:

Abstract

Microbial epidemiology and population genomics have previously been carried out near-exclusively for organisms grown in vitro. Metagenomics helps to overcome this limitation, but it is still challenging to achieve strain-level characterization of microorganisms from culture-independent data with sufficient resolution for epidemiological modelling. Here, we have developed multiple complementary approaches that can be combined to profile and track individual microbial strains. To specifically profile highly recombinant neisseriae from oral metagenomes, we integrated four metagenomic analysis techniques: single nucleotide polymorphisms in the clade's core genome, DNA uptake sequence signatures, metagenomic multilocus sequence typing and strain-specific marker genes. We applied these tools to 520 oral metagenomes from the Human Microbiome Project, finding evidence of site tropism and temporal intra-subject strain retention. Although the opportunistic pathogen Neisseria meningitidis is enriched for colonization in the throat, N. flavescens and N. subflava populate the tongue dorsum, and N. sicca, N. mucosa and N. elongata the gingival plaque. The buccal mucosa appeared as an intermediate ecological niche between the plaque and the tongue. The resulting approaches to metagenomic strain profiling are generalizable and can be extended to other organisms and microbiomes across environments.

  • Subscribe to Nature Microbiology for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    , , & The immune privilege of the oral mucosa. Trends Mol. Med. 14, 191–198 (2008).

  2. 2.

    et al. Oral mucosal immunity. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 116, 576–583 (2013).

  3. 3.

    et al. Toll-like receptor 4 ligation enforces tolerogenic properties of oral mucosal Langerhans cells. J. Allerg. Clin. Immunol. 121, 368–374 (2008).

  4. 4.

    et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

  5. 5.

    et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell. Mol. Immunol. 8, 110–120 (2011).

  6. 6.

    , , , & Correlations of oral bacterial arginine and urea catabolism with caries experience. Oral Microbiol. Immunol. 24, 89–95 (2009).

  7. 7.

    , , , & A preliminary study of the effect of probiotic Streptococcus salivarius K12 on oral malodour parameters. J. Appl. Microbiol. 100, 754–764 (2006).

  8. 8.

    , , , & Transmission, diversity and virulence factors of Streptococcus mutans genotypes. J. Oral Sci. 47, 59–64 (2005).

  9. 9.

    et al. Genome sequencing of disease and carriage isolates of nontypeable Haemophilus influenzae identifies discrete population structure. Proc. Natl Acad. Sci. USA 111, 5439–5444 (2014).

  10. 10.

    , , & The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nature Rev. Microbiol. 6, 288–301 (2008).

  11. 11.

    et al. Genotypic diversity and virulence traits of Streptococcus mutans in caries-free and caries-active individuals. J. Med. Microbiol. 53, 697–703 (2004).

  12. 12.

    et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial ‘pan-genome’. Proc. Natl Acad. Sci. USA 102, 13950–13955 (2005).

  13. 13.

    , & The impact of homologous recombination on the generation of diversity in bacteria. J. Theor. Biol. 239, 210–219 (2006).

  14. 14.

    et al. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol. 13, R42 (2012).

  15. 15.

    & The majority of genes in the pathogenic Neisseria species are present in non-pathogenic Neisseria lactamica, including those designated as ‘virulence genes’. BMC Genomics 7, 128 (2006).

  16. 16.

    , , & Characterization of Neisseria cinerea, a nonpathogenic species isolated on Martin–Lewis medium selective for pathogenic Neisseria spp. J. Clin. Microbiol. 19, 63–67 (1984).

  17. 17.

    The pathogenic potential of commensal species of Neisseria. J. Clin. Pathol. 36, 213–223 (1983).

  18. 18.

    et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl Acad. Sci. USA 95, 3140–3145 (1998).

  19. 19.

    et al. Distribution of surface protein variants among hyperinvasive meningococci: implications for vaccine design. Infect. Immun. 72, 5955–5962 (2004).

  20. 20.

    , , & Oligotyping analysis of the human oral microbiome. Proc. Natl Acad. Sci. USA 111, E2875–E2884 (2014).

  21. 21.

    The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

  22. 22.

    The Human Microbiome Project Consortium. A framework for human microbiome research. Nature 486, 215–221 (2012).

  23. 23.

    , , , & Conservation of meningococcal antigens in the genus Neisseria. mBio 4, e00163–e00113 (2013).

  24. 24.

    & III. Prevalence and persistence of Neisseria cinerea and other Neisseria spp. in adults. J. Clin. Microbiol. 26, 896–900 (1988).

  25. 25.

    et al. A genomic approach to bacterial taxonomy: an examination and proposed reclassification of species within the genus Neisseria. Microbiology 158, 1570–1580 (2012).

  26. 26.

    et al. Genome sequencing reveals widespread virulence gene exchange among human Neisseria species. PLoS ONE 5, e11835 (2010).

  27. 27.

    , , & PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nature Commun. 4, 2304 (2013).

  28. 28.

    & Analysis of the genetic differences between Neisseria meningitidis and Neisseria gonorrhoeae: two closely related bacteria expressing two different pathogenicities. Proc. Natl Acad. Sci. USA 93, 11109–11114 (1996).

  29. 29.

    , , , & Identifying Neisseria species by use of the 50S ribosomal protein L6 (rplF) gene. J. Clin. Microbiol. 52, 1375–1381 (2014).

  30. 30.

    , , & The impact of the neisserial DNA uptake sequences on genome evolution and stability. Genome Biol. 9, R60 (2008).

  31. 31.

    , , & Dialects of the DNA uptake sequence in Neisseriaceae. PLoS Genet. 9, e1003458 (2013).

  32. 32.

    et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nature Methods 12, 902–903 (2015).

  33. 33.

    , & Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).

  34. 34.

    , , , & Grinder: a versatile amplicon and shotgun sequence simulator. Nucleic Acids Res. 40, e94 (2012).

  35. 35.

    Multilocus sequence typing of bacteria. Ann. Rev. Microbiol. 60, 561–588 (2006).

  36. 36.

    & BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11, 595 (2010).

  37. 37.

    et al. Metagenomic microbial community profiling using unique clade-specific marker genes. Nature Methods 9, 811–814 (2012).

  38. 38.

    et al. Dynamics of carriage of Neisseria meningitidis in a group of military recruits: subtype stability and specificity of the immune response following colonization. J. Infect. Dis. 178, 451–459 (1998).

  39. 39.

    et al. Longitudinal study of meningococcal carrier rates in teenagers. Int. J. Hygiene Environ. Health 211, 263–272 (2008).

  40. 40.

    , , , & The influence of mutation, recombination, population history, and selection on patterns of genetic diversity in Neisseria meningitidis. Mol. Biol. Evol. 22, 562–569 (2005).

  41. 41.

    et al. Genomic variation landscape of the human gut microbiome. Nature 493, 45–50 (2013).

  42. 42.

    , , , & MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

  43. 43.

    , , & MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res. 40, e155 (2012).

  44. 44.

    , , & Meta-IDBA: a de novo assembler for metagenomic data. Bioinformatics 27, i94–i101 (2011).

  45. 45.

    et al. Binning metagenomic contigs by coverage and composition. Nature Methods 11, 1144–1146 (2014).

  46. 46.

    et al. GroopM: an automated tool for the recovery of population genomes from related metagenomes. PeerJ 2, e603 (2014).

  47. 47.

    et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523, 208–211 (2015).

  48. 48.

    et al. A culture-independent sequence-based metagenomics approach to the investigation of an outbreak of Shiga-toxigenic Escherichia coli O104:H4. Jama 309, 1502–1510 (2013).

  49. 49.

    et al. PathoScope 2.0: a complete computational framework for strain identification in environmental or clinical sequencing samples. Microbiome 2, 1–15 (2014).

  50. 50.

    et al. Pathoscope: species identification and strain attribution with unassembled sequencing data. Genome Res. 23, 1721–1729 (2013).

  51. 51.

    et al. Strain-level microbial epidemiology and population genomics from shotgun metagenomics. Nature Methods 13, 435–438 (2016).

  52. 52.

    , & Extensive strain-level copy-number variation across human gut microbiome species. Cell 160, 583–594 (2015).

  53. 53.

    , & Pathogenic Escherichia coli. Nature Rev. Microbiol. 2, 123–140 (2004).

  54. 54.

    et al. The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J. Bacteriol. 190, 6881–6893 (2008).

  55. 55.

    , , & Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut 40, 297–301 (1997).

  56. 56.

    Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis. Cell Host Microbe 15, 306–316 (2014).

  57. 57.

    , , , & Helicobacter pylori virulence and the diversity of gastric cancer in Asia. J. Med. Microbiol. 57, 1445–1453 (2008).

  58. 58.

    , & Human immunity to the meningococcus. II. Development of natural immunity. J. Exp. Med. 129, 1327–1348 (1969).

  59. 59.

    , , , & Carriage of Neisseria meningitidis and Neisseria lactamica in infants and children. J. Infect. Dis. 137, 112–121 (1978).

  60. 60.

    & Can we, should we, eradicate the meningococcus? Vaccine 30(Suppl 2), B52–56 (2012).

  61. 61.

    Meningitis in adolescents: the role of commensal microbiota. Trends Microbiol. 23, 181–182 (2015).

  62. 62.

    et al. Clonal waves of Neisseria colonisation and disease in the African meningitis belt: eight-year longitudinal study in northern Ghana. PLoS Med. 4, e101 (2007).

  63. 63.

    , , & NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res. 40, D130–D135 (2012).

  64. 64.

    et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).

  65. 65.

    & Population genetics and evolution of the pan-genome of Streptococcus pneumoniae. Int. J. Med. Microbiol. 301, 619–622 (2011).

  66. 66.

    , & Gene Genealogies, Variation and Evolution: A Primer in Coalescent Theory (Oxford Univ. Press, 2004).

  67. 67.

    & Fast gapped-read alignment with Bowtie 2. Nature Methods 9, 357–359 (2012).

  68. 68.

    , & mlstdbNet—distributed multi-locus sequence typing (MLST) databases. BMC Bioinformatics 5, 86 (2004).

  69. 69.

    et al. Relating the metatranscriptome and metagenome of the human gut. Proc. Natl Acad. Sci. USA 111, E2329–2338 (2014).

  70. 70.

    , , , & Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ 3, e1029 (2015).

Download references

Acknowledgements

The authors acknowledge the Human Microbiome Project Consortium and the generous participation of individuals from the Saint Louis (MO) and Houston (TX) areas who made the Human Microbiome Project possible. This work was supported in part by NIH grants R01HG005969 and U54DE023798, NSF grant DBI-1053486 and Army Research Office grant W911NF-11-1-0473 to C.H., and a European Union FP7 Marie-Curie grant (PCIG13-618833), MIUR grant FIR RBFR13EWWI, Fondazione Caritro grant Rif.Int.2013.0239, CIBIO Start-up funds and Terme di Comano grants to N.S.

Author information

Affiliations

  1. Computational Biology Unit, Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010 San Michele All'adige, Italy

    • Claudio Donati
    •  & Davide Albanese
  2. Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy

    • Moreno Zolfo
    • , Duy Tin Truong
    • , Francesco Asnicar
    • , Olivier Jousson
    •  & Nicola Segata
  3. Department of Public Health and Infectious Diseases, Institute Pasteur Cenci Bolognetti Foundation, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy

    • Valerio Iebba
  4. Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Firenze, Italy

    • Duccio Cavalieri
  5. Institute of Biometeorology, National Research Council (IBIMET-CNR), Via Caproni 8, 50145 Firenze, Italy

    • Duccio Cavalieri
    •  & Carlotta De Filippo
  6. Biostatistics Department, Harvard School of Public Health, Boston, Massachusetts 02115, USA

    • Curtis Huttenhower
  7. Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA

    • Curtis Huttenhower

Authors

  1. Search for Claudio Donati in:

  2. Search for Moreno Zolfo in:

  3. Search for Davide Albanese in:

  4. Search for Duy Tin Truong in:

  5. Search for Francesco Asnicar in:

  6. Search for Valerio Iebba in:

  7. Search for Duccio Cavalieri in:

  8. Search for Olivier Jousson in:

  9. Search for Carlotta De Filippo in:

  10. Search for Curtis Huttenhower in:

  11. Search for Nicola Segata in:

Contributions

C.D. and N.S. conceived the study, implemented the software and performed the analyses. M.Z., D.A., D.T.T., F.A., V.I. and C.H. contributed to the analyses. D.C., O.J., C.D.F. and C.H. provided feedback and contributed to the writing. C.D., C.H. and N.S. wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Claudio Donati or Nicola Segata.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Figures 1–20, legends for Supplementary Tables 1–4, Supplementary Tables 5 and 6 and Supplementary References.

Excel files

  1. 1.

    Supplementary Table 1

    List of the genomes from the Neisseriaceae families. considered in this work.

  2. 2.

    Supplementary Table 2

    DNA uptake sequences (DUS) from 241 genomes of Neisseriaceae family members.

  3. 3.

    Supplementary Table 3

    Clustering of the metagenomic samples and the genomic sequences of the reference strains obtained by performing a discriminant analysis of principal components.

  4. 4.

    Supplementary Table 4

    DNA uptake sequences (DUS) from the oral metagenomes.