Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HIV–host interactome revealed directly from infected cells

Abstract

Although genetically compact, HIV-1 commandeers vast arrays of cellular machinery to sustain and protect it during cycles of viral outgrowth. Transposon-mediated saturation linker scanning mutagenesis was used to isolate fully replication-competent viruses harbouring a potent foreign epitope tag. Using these viral isolates, we performed differential isotopic labelling and affinity-capture mass spectrometric analyses on samples obtained from cultures of human lymphocytes to classify the vicinal interactomes of the viral Env and Vif proteins as they occur during natural infection. Importantly, interacting proteins were recovered without bias, regardless of their potential for positive, negative or neutral impact on viral replication. We identified specific host associations made with trimerized Env during its biosynthesis, at virological synapses, with innate immune effectors (such as HLA-E) and with certain cellular signalling pathways (for example, Notch1). We also defined Vif associations with host proteins involved in the control of nuclear transcription and nucleoside biosynthesis as well as those interacting stably or transiently with the cytoplasmic protein degradation apparatus. Our approach is broadly applicable to elucidating pathogen–host interactomes, providing high-certainty identification of interactors by their direct access during cycling infection. Understanding the pathophysiological consequences of these associations is likely to provide strategic targets for antiviral intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selection of replication-competent, tagged derivatives of HIV-1.
Figure 2: Permissible sites of insertion within Env and Vif and visualization of each tagged protein during infection.
Figure 3: Reciprocal mass spectrometric isotopic differentiation of interactions as random or targeted (MS I-DIRT) (ref. 19) plot for Env (including inset of region from 0.97 to 1.0) and histogram of the number of proteins versus average I-DIRT ratios for Env.
Figure 4: Vif interactors identified by reciprocal MS I-DIRT analysis and documentation of differential binding kinetics of its interactors.
Figure 5: Experimental documentation for select interactors.
Figure 6: Summary of biological subclasses of cellular interactors engaged with Vif and Env during active viral growth.

Similar content being viewed by others

References

  1. Brass, A. L. et al. Identification of host proteins required for HIV infection through a functional genomic screen. Science 319, 921–926 (2008).

    Article  CAS  Google Scholar 

  2. Bushman, F. D. et al. Host cell factors in HIV replication: meta-analysis of genome-wide studies. PLoS Pathogens 5, e1000437 (2009).

    Article  CAS  Google Scholar 

  3. Konig, R. et al. Global analysis of host–pathogen interactions that regulate early-stage HIV-1 replication. Cell 135, 49–60 (2008).

    Article  CAS  Google Scholar 

  4. Zhou, H. et al. Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe 4, 495–504 (2008).

    Article  CAS  Google Scholar 

  5. Luo, Y. & Muesing, M. A. Mass spectrometry-based proteomic approaches for discovery of HIV–host interactions. Future Virol. 9, 979–992 (2014).

    Article  CAS  Google Scholar 

  6. Jager, S. et al. Global landscape of HIV–human protein complexes. Nature 481, 365–370 (2012).

    Article  CAS  Google Scholar 

  7. Julien, J. P. et al. Crystal structure of a soluble cleaved HIV-1 envelope trimer. Science 342, 1477–1483 (2013).

    Article  CAS  Google Scholar 

  8. Guo, Y. et al. Structural basis for hijacking CBF-β and CUL5 E3 ligase complex by HIV-1 Vif. Nature 505, 229–233 (2014).

    Article  CAS  Google Scholar 

  9. Pancera, M. et al. Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature 514, 455–461 (2014).

    Article  CAS  Google Scholar 

  10. de Taeye, S. W. et al. Immunogenicity of stabilized HIV-1 envelope trimers with reduced exposure of non-neutralizing epitopes. Cell 163, 1702–1715 (2015).

    Article  CAS  Google Scholar 

  11. Guttman, M. et al. CD4-induced activation in a soluble HIV-1 Env trimer. Structure 22, 974–984 (2014).

    Article  CAS  Google Scholar 

  12. Laird, M. E. & Desrosiers, R. C. Infectivity and neutralization of simian immunodeficiency virus with FLAG epitope insertion in gp120 variable loops. J. Virol. 81, 10838–10848 (2007).

    Article  CAS  Google Scholar 

  13. Pantophlet, R., Wang, M., Aguilar-Sino, R. O. & Burton, D. R. The human immunodeficiency virus type 1 envelope spike of primary viruses can suppress antibody access to variable regions. J. Virol. 83, 1649–1659 (2009).

    Article  CAS  Google Scholar 

  14. Yang, X., Lipchina, I., Cocklin, S., Chaiken, I. & Sodroski, J. Antibody binding is a dominant determinant of the efficiency of human immunodeficiency virus type 1 neutralization. J. Virol. 80, 11404–11408 (2006).

    Article  CAS  Google Scholar 

  15. Bergeron, J. R. et al. The SOCS-box of HIV-1 Vif interacts with ElonginBC by induced-folding to recruit its Cul5-containing ubiquitin ligase complex. PLoS Pathogens 6, e1000925 (2010).

    Article  CAS  Google Scholar 

  16. Etienne, L., Hahn, B. H., Sharp, P. M., Matsen, F. A. & Emerman, M. Gene loss and adaptation to hominids underlie the ancient origin of HIV-1. Cell Host Microbe 14, 85–92 (2013).

    Article  CAS  Google Scholar 

  17. Bernacchi, S., Mercenne, G., Tournaire, C., Marquet, R. & Paillart, J. C. Importance of the proline-rich multimerization domain on the oligomerization and nucleic acid binding properties of HIV-1 Vif. Nucleic Acids Res. 39, 2404–2415 (2011).

    Article  CAS  Google Scholar 

  18. Wichroski, M. J., Robb, G. B. & Rana, T. M. Human retroviral host restriction factors APOBEC3G and APOBEC3F localize to mRNA processing bodies. PLoS Pathogens 2, e41 (2006).

    Article  CAS  Google Scholar 

  19. Tackett, A. J. et al. I-DIRT, a general method for distinguishing between specific and nonspecific protein interactions. J. Proteome Res. 4, 1752–1756 (2005).

    Article  CAS  Google Scholar 

  20. Cong, Y. et al. 4.0-Å resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement. Proc. Natl Acad. Sci. USA 107, 4967–4972 (2010).

    Article  Google Scholar 

  21. Dron, M. et al. Molecular cloning of ADIR, a novel interferon responsive gene encoding a protein related to the torsins. Genomics 79, 315–325 (2002).

    Article  CAS  Google Scholar 

  22. Turner, E., Brown, R. S., Laudermilch, E., Tsai, P. & Schlieker, C. The torsin activator LULL1 is required for efficient growth of HSV-1. J. Virol. 89, 8444–8452 (2015).

    Article  CAS  Google Scholar 

  23. Hansen, T. H. & Bouvier, M. MHC class I antigen presentation: learning from viral evasion strategies. Nature Rev. Immunol. 9, 503–513 (2009).

    Article  CAS  Google Scholar 

  24. Collins, K. L. & Baltimore, D. HIV's evasion of the cellular immune response. Immunol. Rev. 168, 65–74 (1999).

    Article  Google Scholar 

  25. Schulte, D. et al. The HLA-ER/HLA-ER genotype affects the natural course of hepatitis C virus (HCV) infection and is associated with HLA-E-restricted recognition of an HCV-derived peptide by interferon-γ-secreting human CD8+ T cells. J. Infect. Dis. 200, 1397–1401 (2009).

    Article  CAS  Google Scholar 

  26. Abela, I. A. et al. Cell–cell transmission enables HIV-1 to evade inhibition by potent CD4bs directed antibodies. PLoS Pathogens 8, e1002634 (2012).

    Article  CAS  Google Scholar 

  27. Sourisseau, M., Sol-Foulon, N., Porrot, F., Blanchet, F. & Schwartz, O. Inefficient human immunodeficiency virus replication in mobile lymphocytes. J. Virol. 81, 1000–1012 (2007).

    Article  CAS  Google Scholar 

  28. Brandenberg, O. F. et al. Partial rescue of V1V2 mutant infectivity by HIV-1 cell–cell transmission supports the domain inverted question marks exceptional capacity for sequence variation. Retrovirology 11, 75 (2014).

    Google Scholar 

  29. Dale, B. M., Alvarez, R. A. & Chen, B. K. Mechanisms of enhanced HIV spread through T-cell virological synapses. Immunol. Rev. 251, 113–124 (2013).

    Article  CAS  Google Scholar 

  30. Duncan, C. J. et al. High-multiplicity HIV-1 infection and neutralizing antibody evasion mediated by the macrophage–T cell virological synapse. J. Virol. 88, 2025–2034 (2014).

    Article  CAS  Google Scholar 

  31. Malbec, M. et al. Broadly neutralizing antibodies that inhibit HIV-1 cell to cell transmission. J. Exp. Med. 210, 2813–2821 (2013).

    Article  CAS  Google Scholar 

  32. Jolly, C., Booth, N. J. & Neil, S. J. Cell–cell spread of human immunodeficiency virus type 1 overcomes tetherin/BST-2-mediated restriction in T cells. J. Virol. 84, 12185–12199 (2010).

    Article  CAS  Google Scholar 

  33. Zhong, P. et al. Cell-to-cell transmission can overcome multiple donor and target cell barriers imposed on cell-free HIV. PLoS ONE 8, e53138 (2013).

    Article  CAS  Google Scholar 

  34. Sigal, A. et al. Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature 477, 95–98 (2011).

    Article  CAS  Google Scholar 

  35. Shim, A. H., Tirado-Lee, L. & Prakriya, M. Structural and functional mechanisms of CRAC channel regulation. J. Mol. Biol. 427, 77–93 (2014).

    Article  CAS  Google Scholar 

  36. Van Rossum, D. B. et al. DANGER, a novel regulatory protein of inositol 1,4,5-trisphosphate-receptor activity. J. Biol. Chem. 281, 37111–37116 (2006).

    Article  CAS  Google Scholar 

  37. Suh, H. S. et al. Insulin-like growth factor 2 receptor is an IFNγ-inducible microglial protein that facilitates intracellular HIV replication: implications for HIV-induced neurocognitive disorders. Am. J Pathol. 177, 2446–2458 (2010).

    Article  CAS  Google Scholar 

  38. Go, E. P. et al. Characterization of host-cell line specific glycosylation profiles of early transmitted/founder HIV-1 gp120 envelope proteins. J. Proteome Res. 12, 1223–1234 (2013).

    Article  CAS  Google Scholar 

  39. Guruharsha, K. G., Kankel, M. W. & Artavanis-Tsakonas, S. The Notch signalling system: recent insights into the complexity of a conserved pathway. Nature Rev. Genet. 13, 654–666 (2012).

    Article  CAS  Google Scholar 

  40. Kulpa, D. A. et al. The immunological synapse: the gateway to the HIV reservoir. Immunol. Rev. 254, 305–325 (2013).

    Article  CAS  Google Scholar 

  41. Tyagi, M. & Karn, J. CBF-1 promotes transcriptional silencing during the establishment of HIV-1 latency. EMBO J 26, 4985–4995 (2007).

    Article  CAS  Google Scholar 

  42. Lee, H. J., Kim, M. Y. & Park, H. S. Phosphorylation-dependent regulation of Notch1 signaling: the fulcrum of Notch1 signaling. BMB Rep. 48, 431–437 (2015).

    Article  CAS  Google Scholar 

  43. Geimer Le Lay, A. S. et al. The tumor suppressor Ikaros shapes the repertoire of Notch target genes in T cells. Sci. Signal. 7, ra28 (2014).

    Article  CAS  Google Scholar 

  44. Munger, J., Bajad, S. U., Coller, H. A., Shenk, T. & Rabinowitz, J. D. Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathogens 2, e132 (2006).

    Article  CAS  Google Scholar 

  45. Kim, D. Y. et al. CBFβ stabilizes HIV Vif to counteract APOBEC3 at the expense of RUNX1 target gene expression. Mol. Cell 49, 632–644 (2013).

    Article  CAS  Google Scholar 

  46. Jager, S. et al. Vif hijacks CBF-β to degrade APOBEC3G and promote HIV-1 infection. Nature 481, 371–375 (2012).

    Article  CAS  Google Scholar 

  47. Zhang, W., Du, J., Evans, S. L., Yu, Y. & Yu, X. F. T-cell differentiation factor CBF-β regulates HIV-1 Vif-mediated evasion of host restriction. Nature 481, 376–379 (2012).

    Article  CAS  Google Scholar 

  48. Xiao, Z. et al. Assembly of HIV-1 Vif-Cul5 E3 ubiquitin ligase through a novel zinc-binding domain-stabilized hydrophobic interface in Vif. Virology 349, 290–299 (2006).

    Article  CAS  Google Scholar 

  49. Yu, Y., Xiao, Z., Ehrlich, E. S., Yu, X. & Yu, X. F. Selective assembly of HIV-1 Vif-Cul5-ElonginB-ElonginC E3 ubiquitin ligase complex through a novel SOCS box and upstream cysteines. Genes Dev. 18, 2867–2872 (2004).

    Article  CAS  Google Scholar 

  50. Yu, X. et al. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302, 1056–1060 (2003).

    Article  CAS  Google Scholar 

  51. Hernan, R., Heuermann, K. & Brizzard, B. Multiple epitope tagging of expressed proteins for enhanced detection. Biotechniques 28, 789–793 (2000).

    Article  Google Scholar 

  52. Low, A. et al. Natural polymorphisms of human immunodeficiency virus type 1 integrase and inherent susceptibilities to a panel of integrase inhibitors. Antimicrob. Agents Chemother. 53, 4275–4282 (2009).

    Article  CAS  Google Scholar 

  53. Mohammed, K. D., Topper, M. B. & Muesing, M. A. Sequential deletion of the integrase (Gag-Pol) carboxyl terminus reveals distinct phenotypic classes of defective HIV-1. J. Virol. 85, 4654–4666 (2011).

    Article  CAS  Google Scholar 

  54. Topper, M. et al. Posttranslational acetylation of the human immunodeficiency virus type 1 integrase carboxyl-terminal domain is dispensable for viral replication. J. Virol. 81, 3012–3017 (2007).

    Article  CAS  Google Scholar 

  55. Wiskerchen, M. & Muesing, M. A. Human immunodeficiency virus type 1 integrase: effects of mutations on viral ability to integrate, direct viral gene expression from unintegrated viral DNA templates, and sustain viral propagation in primary cells. J. Virol. 69, 376–386 (1995).

    Google Scholar 

  56. Remenyi, R. et al. A comprehensive functional map of the hepatitis C virus genome provides a resource for probing viral proteins. mBio 5, e01469 (2014).

    Article  CAS  Google Scholar 

  57. Levy, D. N., Aldrovandi, G. M., Kutsch, O. & Shaw, G. M. Dynamics of HIV-1 recombination in its natural target cells. Proc. Natl Acad. Sci. USA 101, 4204–4209 (2004).

    Article  CAS  Google Scholar 

  58. Hirt, B. Selective extraction of polyoma DNA from infected mouse cell cultures. J. Mol. Biol. 26, 365–369 (1967).

    Article  Google Scholar 

  59. Moore, P. L. et al. Nature of nonfunctional envelope proteins on the surface of human immunodeficiency virus type 1. J. Virol. 80, 2515–2528 (2006).

    Article  CAS  Google Scholar 

  60. Crooks, E. T. et al. Characterizing anti-HIV monoclonal antibodies and immune sera by defining the mechanism of neutralization. Hum. Antibodies 14, 101–113 (2005).

    Article  Google Scholar 

  61. Binley, J. M. et al. A recombinant human immunodeficiency virus type 1 envelope glycoprotein complex stabilized by an intermolecular disulfide bond between the gp120 and gp41 subunits is an antigenic mimic of the trimeric virion-associated structure. J. Virol. 74, 627–643 (2000).

    Article  Google Scholar 

  62. Sanders, R. W. et al. The mannose-dependent epitope for neutralizing antibody 2G12 on human immunodeficiency virus type 1 glycoprotein gp120. J. Virol. 76, 7293–7305 (2002).

    Article  CAS  Google Scholar 

  63. Scanlan, C. N. et al. The broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2G12 recognizes a cluster of alpha1→2 mannose residues on the outer face of gp120. J. Virol. 76, 7306–7321 (2002).

    Article  CAS  Google Scholar 

  64. Billington, J. et al. Stability of a receptor-binding active human immunodeficiency virus type 1 recombinant gp140 trimer conferred by intermonomer disulfide bonding of the V3 loop: differential effects of protein disulfide isomerase on CD4 and coreceptor binding. J. Virol. 81, 4604–4614 (2007).

    Article  CAS  Google Scholar 

  65. Walker, L. M. et al. Rapid development of glycan-specific, broad, and potent anti-HIV-1 gp120 neutralizing antibodies in an R5 SIV/HIV chimeric virus infected macaque. Proc. Natl Acad. Sci. USA 108, 20125–20129 (2011).

    Article  Google Scholar 

  66. Li, Y. et al. Mechanism of neutralization by the broadly neutralizing HIV-1 monoclonal antibody VRC01. J. Virol. 85, 8954–8967 (2011).

    Article  CAS  Google Scholar 

  67. Wu, X. et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329, 856–861 (2010).

    Article  CAS  Google Scholar 

  68. Walker, L. M. et al. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477, 466–470 (2011).

    Article  CAS  Google Scholar 

  69. Walker, L. M. et al. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326, 285–289 (2009).

    Article  CAS  Google Scholar 

  70. Huang, J. et al. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature 491, 406–412 (2012).

    Article  CAS  Google Scholar 

  71. Zwick, M. B., Saphire, E. O. & Burton, D. R. gp41: HIV's shy protein. Nature Med. 10, 133–134 (2004).

    Article  CAS  Google Scholar 

  72. Abacioglu, Y. H. et al. Epitope mapping and topology of baculovirus-expressed HIV-1 gp160 determined with a panel of murine monoclonal antibodies. AIDS Res. Hum. Retroviruses 10, 371–381 (1994).

    Article  Google Scholar 

  73. Gorny, M. K., Gianakakos, V., Sharpe, S. & Zolla-Pazner, S. Generation of human monoclonal antibodies to human immunodeficiency virus. Proc. Natl Acad. Sci. USA 86, 1624–1628 (1989).

    Article  Google Scholar 

  74. Xu, J. Y., Gorny, M. K., Palker, T., Karwowska, S. & Zolla-Pazner, S. Epitope mapping of two immunodominant domains of gp41, the transmembrane protein of human immunodeficiency virus type 1, using ten human monoclonal antibodies. J. Virol. 65, 4832–4838 (1991).

    Google Scholar 

  75. Dennison, S. M. et al. Nonneutralizing HIV-1 gp41 envelope cluster II human monoclonal antibodies show polyreactivity for binding to phospholipids and protein autoantigens. J. Virol. 85, 1340–1347 (2011).

    Article  CAS  Google Scholar 

  76. Simon, J. H. et al. The Vif and Gag proteins of human immunodeficiency virus type 1 colocalize in infected human T cells. J. Virol. 71, 5259–5267 (1997).

    Google Scholar 

  77. Fouchier, R. A., Simon, J. H., Jaffe, A. B. & Malim, M. H. Human immunodeficiency virus type 1 Vif does not influence expression or virion incorporation of gag-, pol-, and env-encoded proteins. J. Virol. 70, 8263–8269 (1996).

    Google Scholar 

  78. Simon, J. H., Southerling, T. E., Peterson, J. C., Meyer, B. E. & Malim, M. H. Complementation of vif-defective human immunodeficiency virus type 1 by primate, but not nonprimate, lentivirus vif genes. J. Virol. 69, 4166–4172 (1995).

    Google Scholar 

  79. Brizzard, B. L., Chubet, R. G. & Vizard, D. L. Immunoaffinity purification of FLAG epitope-tagged bacterial alkaline phosphatase using a novel monoclonal antibody and peptide elution. Biotechniques 16, 730–735 (1994).

    Google Scholar 

  80. Cristea, I. M., Williams, R., Chait, B. T. & Rout, M. P. Fluorescent proteins as proteomic probes. Mol. Cell. Proteom. 4, 1933–1941 (2005).

    Article  CAS  Google Scholar 

  81. Scheid, J. F. et al. Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature 458, 636–640 (2009).

    Article  CAS  Google Scholar 

  82. Scheid, J. F. et al. A method for identification of HIV gp140 binding memory B cells in human blood. J. Immunol. Methods 343, 65–67 (2009).

    Article  CAS  Google Scholar 

  83. Yang, X., Farzan, M., Wyatt, R. & Sodroski, J. Characterization of stable, soluble trimers containing complete ectodomains of human immunodeficiency virus type 1 envelope glycoproteins. J. Virol. 74, 5716–5725 (2000).

    Article  Google Scholar 

  84. Vermeire, J. et al. Quantification of reverse transcriptase activity by real-time PCR as a fast and accurate method for titration of HIV, lenti- and retroviral vectors. PLoS ONE 7, e50859 (2012).

    Article  CAS  Google Scholar 

  85. Hall, M. P. et al. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem. Biol. 7, 1848–1857 (2012).

    Article  CAS  Google Scholar 

  86. Hazuda, D. J. et al. Integrase inhibitors and cellular immunity suppress retroviral replication in rhesus macaques. Science 305, 528–532 (2004).

    Article  CAS  Google Scholar 

  87. Guise, A. J., Greco, T. M., Zhang, I. Y., Yu, F. & Cristea, I. M. Aurora B-dependent regulation of class IIa histone deacetylases by mitotic nuclear localization signal phosphorylation. Mol. Cell. Proteom. 11, 1220–1229 (2012).

    Article  CAS  Google Scholar 

  88. Vizcaino, J. A. et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, D447–D456 (2016).

    Article  CAS  Google Scholar 

  89. Spivak, M., Weston, J., Bottou, L., Kall, L. & Noble, W. S. Improvements to the percolator algorithm for peptide identification from shotgun proteomics data sets. J. Proteome Res. 8, 3737–3745 (2009).

    Article  CAS  Google Scholar 

  90. Kutluay, S. B. et al. Global changes in the RNA binding specificity of HIV-1 gag regulate virion genesis. Cell 159, 1096–1109 (2014).

    Article  CAS  Google Scholar 

  91. Goodchild, R. E. & Dauer, W. T. Mislocalization to the nuclear envelope: an effect of the dystonia-causing torsinA mutation. Proc. Natl Acad. Sci. USA 101, 847–852 (2004).

    Article  CAS  Google Scholar 

  92. Hanson, P. I. & Whiteheart, S. W. AAA+ proteins: have engine, will work. Nature Rev. Mol. Cell Biol. 6, 519–529 (2005).

    Article  CAS  Google Scholar 

  93. Naismith, T. V., Heuser, J. E., Breakefield, X. O. & Hanson, P. I. TorsinA in the nuclear envelope. Proc. Natl Acad. Sci. USA 101, 7612–7617 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health: R01AI047054, R21AI065321, R01AI081615 and R21AI097233 (to M.A.M.), P41GM103314 (to B.T.C. and D.F.), U54GM103511 (to M.P.R., B.T.C., M.A.M. and D.F.), P41GM109824 (to M.P.R. and B.T.C.), R01AI093278 and R33AI084714 (to J.M.B.) and DP1DA026192 and R21AI102187 (to I.M.C.). The authors thank V. Sahi (Aaron Diamond AIDS Research Center) for all flow cytometry employed in this study, C. Zhao and C. Schlieker (Yale University) for the TOR1AIP2 (LULL1) CRISPR/Cas9 knockout HeLa cell line, P. Nahirney (Rockefeller EM Resource Center) for imaging, M. Nussenzweig (Rockefeller University) for a trimerized derivative of YU-2 gp140 Env, K. Jacobs, J. Boland and D. Roberson of the NCI Core Genotyping Facility for ion torrent sequencing, and contributors to the NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH, for specified reagents described in the Supplementary Methods.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. and M.A.M. designed and developed the genetic strategy used to select epitope-tagged, replication-competent viruses. I.M.C., E.Y.J., M.P.R. and B.T.C. designed and developed the proteomic and MS approaches described. Y.L. generated all libraries and performed the genetic, virological, immunofluorescent, electron microscopic studies and immunoisolations. T.M.G. performed the mass spectrometric analyses. D.F., T.M.G., E.Y.J. and Y.L. compiled and evaluated the MS data. S.K., D.F., E.Y.J. and Y.L. analysed the deep sequencing results of the mutagenic landscape. Y.L. performed molecular characterization of tagged viral clones. T.T. and J.M.B. determined the oligomeric status of the HIV-1 tagged Env pullouts. Y.L. and K.D.M. performed the neutralization and super-pseudotyping experiments, and assayed Notch1 processing and phosphorylation, while E.Y.J. conducted Env reciprocal immunoprecipitations and Vif co-transfection experiments. Y.L., E.Y.J., T.M.G., T.T., J.M.B., M.P.R., B.T.C. and M.A.M. wrote the manuscript, with assistance from all authors.

Corresponding author

Correspondence to Mark A. Muesing.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Figures 1-17 and Supplementary Tables 1 and 2. (PDF 1780 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Jacobs, E., Greco, T. et al. HIV–host interactome revealed directly from infected cells. Nat Microbiol 1, 16068 (2016). https://doi.org/10.1038/nmicrobiol.2016.68

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.68

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing