Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments

Abstract

Members of the archaeal phylum Bathyarchaeota are widespread and abundant in the energy-deficient marine subsurface sediments. However, their life strategies have remained largely elusive. Here, we provide genetic evidence that some lineages of Bathyarchaeota are acetogens, being capable of homoacetogenesis, a metabolism so far restricted to the domain Bacteria. Metabolic reconstruction based on genomic bins assembled from the metagenome of deep-sea subsurface sediments shows that the metabolism of some lineages of Bathyarchaeota is similar to that of bona fide bacterial homoacetogens, by having pathways for acetogenesis and for the fermentative utilization of a variety of organic substrates. Heterologous expression and activity assay of the acetate kinase gene ack from Bathyarchaeota, demonstrate further the capability of these Bathyarchaeota to grow as acetogens. The presence and expression of bathyarchaeotal genes indicative of active acetogenesis was also confirmed in Peru Margin subsurface sediments where Bathyarchaeota are abundant. The analyses reveal that this ubiquitous and abundant subsurface archaeal group has adopted a versatile life strategy to make a living under energy-limiting conditions. These findings further expand the metabolic potential of Archaea and argue for a revision of the role of Archaea in the carbon cycle of marine sediments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phylogenetic trees showing the placement of genomic bins in the archaeal phylum Bathyarchaeota.
Figure 2: Overview of pathways reconstructed in Bathyarchaeota.
Figure 3: Phylogenies of key genes known to be involved in acetogenesis.
Figure 4: Proposed roles of acetogenic archaea in the deep biosphere.

Similar content being viewed by others

References

  1. Kallmeyer, J., Pockalny, R., Adhikari, R. R., Smith, D. C. & D'Hondt, S. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc. Natl Acad. Sci. USA 109, 16213–16216 (2012).

    Article  Google Scholar 

  2. Hoehler, T. M. & Jorgensen, B. B. Microbial life under extreme energy limitation. Nature Rev. Microbiol. 11, 83–94 (2013).

    Article  Google Scholar 

  3. D'Hondt, S. et al. Distributions of microbial activities in deep subseafloor sediments. Science 306, 2216–2221 (2004).

    Article  Google Scholar 

  4. Biddle, J. F. et al. Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proc. Natl Acad. Sci. USA 103, 3846–3851 (2006).

    Article  Google Scholar 

  5. Bowles, M. W., Mogollon, J. M., Kasten, S., Zabel, M. & Hinrichs, K. U. Global rates of marine sulfate reduction and implications for sub-sea-floor metabolic activities. Science 344, 889–891 (2014).

    Article  Google Scholar 

  6. Pedersen, K. et al. Numbers, biomass and cultivable diversity of microbial populations relate to depth and borehole-specific conditions in groundwater from depths of 4–450 m in Olkiluoto, Finland. ISME J. 2, 760–775 (2008).

    Article  Google Scholar 

  7. Lever, M. A. et al. Acetogenesis in deep subseafloor sediments of the Juan de Fuca Ridge Flank: a synthesis of geochemical, thermodynamic, and gene-based evidence. Geomicrobiol. J. 27, 183–211 (2010).

    Article  Google Scholar 

  8. Lipp, J. S., Morono, Y., Inagaki, F. & Hinrichs, K. U. Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature 454, 991–994 (2008).

    Article  Google Scholar 

  9. Kubo, K. et al. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments. ISME J. 6, 1949–1965 (2012).

    Article  Google Scholar 

  10. Lloyd, K. G. et al. Predominant archaea in marine sediments degrade detrital proteins. Nature 496, 215–218 (2013).

    Article  Google Scholar 

  11. Fry, J. C., Parkes, R. J., Cragg, B. A., Weightman, A. J. & Webster, G. Prokaryotic biodiversity and activity in the deep subseafloor biosphere. FEMS Microbiol. Ecol. 66, 181–196 (2008).

    Article  Google Scholar 

  12. Lloyd, K. G., May, M. K., Kevorkian, R. T. & Steen, A. D. Meta-analysis of quantification methods shows that archaea and bacteria have similar abundances in the subseafloor. Appl. Environ. Microbiol. 79, 7790–7799 (2013).

    Article  Google Scholar 

  13. Meng, J. et al. Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. ISME J. 8, 650–659 (2014).

    Article  Google Scholar 

  14. Seyler, L. M., McGuinness, L. M. & Kerkhof, L. J. Crenarchaeal heterotrophy in salt marsh sediments. ISME J. 8, 1534–1543 (2014).

    Article  Google Scholar 

  15. Lazar, C. B. et al. Genomic evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota in estuarine sediments. Environ. Microbiol. http://dx.doi.org/10.1111/1462-2920.13142 (2016).

  16. Evans, P. N. et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350, 434–438 (2015).

    Article  Google Scholar 

  17. Puigbo, P., Wolf, Y. I. & Koonin, E. V. Search for a ‘Tree of Life’ in the thicket of the phylogenetic forest. J. Biol. 8, 59 (2009).

    Article  Google Scholar 

  18. Schmidt, M. & Schonheit, P. Acetate formation in the photoheterotrophic bacterium Chloroflexus aurantiacus involves an archaeal type ADP-forming acetyl-CoA synthetase isoenzyme I. FEMS Microbiol. Lett. 349, 171–179 (2013).

    Article  Google Scholar 

  19. Parizzi, L. P. et al. The genome sequence of Propionibacterium acidipropionici provides insights into its biotechnological and industrial potential. BMC Genomics 13, 562 (2012).

    Article  Google Scholar 

  20. Rother, M. & Metcalf, W. W. Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. Proc. Natl Acad. Sci. USA 101, 16929–16934 (2004).

    Article  Google Scholar 

  21. Fournier, G. P. & Gogarten, J. P. Evolution of acetoclastic methanogenesis in Methanosarcina via horizontal gene transfer from cellulolytic Clostridia. J. Bacteriol. 190, 1124–1127 (2008).

    Article  Google Scholar 

  22. Drake, H. L., Kusel, K. & Matthies, C. Ecological consequences of the phylogenetic and physiological diversities of acetogens. Antonie Van Leeuwenhoek 81, 203–213 (2002).

    Article  Google Scholar 

  23. Henstra, A. M., Dijkema, C. & Stams, A. J. Archaeoglobus fulgidus couples CO oxidation to sulfate reduction and acetogenesis with transient formate accumulation. Environ. Microbiol. 9, 1836–1841 (2007).

    Article  Google Scholar 

  24. Ettema, T. J. et al. Identification and functional verification of archaeal-type phosphoenolpyruvate carboxylase, a missing link in archaeal central carbohydrate metabolism. J. Bacteriol. 186, 7754–7762 (2004).

    Article  Google Scholar 

  25. Mock, J., Wang, S., Huang, H., Kahnt, J. & Thauer, R. K. Evidence for a hexaheteromeric methylenetetrahydrofolate reductase in Moorella thermoacetica. J. Bacteriol. 196, 3303–3314 (2014).

    Article  Google Scholar 

  26. Ragsdale, S. W. Enzymology of the Wood–Ljungdahl pathway of acetogenesis. Ann. NY Acad. Sci. 1125, 129–136 (2008).

    Article  Google Scholar 

  27. Martin, W. F., Sousa, F. L. & Lane, N. Energy at life's origin. Science 344, 1092–1093 (2014).

    Article  Google Scholar 

  28. Martin, W. F., Neukirchen, S. & Sousa, F. L. Microbial Evolution under Extreme Conditions 171–184 (de Gruyter, 2015).

    Google Scholar 

  29. Ueno, Y., Yamada, K., Yoshida, N., Maruyama, S. & Isozaki, Y. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440, 516–519 (2006).

    Article  Google Scholar 

  30. Rothman, D. H. et al. Methanogenic burst in the end-Permian carbon cycle. Proc. Natl Acad. Sci. USA 111, 5462–5467 (2014).

    Article  Google Scholar 

  31. Heuer, V. B., Pohlman, J. W., Torres, M. E., Elvert, M. & Hinrichs, K. U. The stable carbon isotope biogeochemistry of acetate and other dissolved carbon species in deep subseafloor sediments at the northern Cascadia margin. Geochim. Cosmochim. Acta 73, 3323–3336 (2009).

    Article  Google Scholar 

  32. Lever, M. A. Acetogenesis in the energy-starved deep biosphere—a paradox? Front. Microbiol. 2, 284 (2011).

    Google Scholar 

  33. Biddle, J. F., Fitz-Gibbon, S., Schuster, S. C., Brenchley, J. E. & House, C. H. Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc. Natl Acad. Sci. USA 105, 10583–10588 (2008).

    Article  Google Scholar 

  34. Orsi, W. D., Edgcomb, V. P., Christman, G. D. & Biddle, J. F. Gene expression in the deep biosphere. Nature 499, 205–208 (2013).

    Article  Google Scholar 

  35. Meador, T. B. et al. The archaeal lipidome in estuarine sediment dominated by members of the Miscellaneous Crenarchaeotal Group. Environ. Microbiol. 17, 2441–2458 (2014).

    Article  Google Scholar 

  36. Drake, H. L., Gossner, A. S. & Daniel, S. L. Old acetogens, new light. Ann. NY Acad. Sci. 1125, 100–128 (2008).

    Article  Google Scholar 

  37. Ovreas, L., Forney, L., Daae, F. L. & Torsvik, V. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 63, 3367–3373 (1997).

    Google Scholar 

  38. Jorgensen, S. L. et al. Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. Proc. Natl Acad. Sci. USA 109, E2846–E2855 (2012).

    Article  Google Scholar 

  39. Song, Z. Q. et al. Bacterial and archaeal diversities in Yunnan and Tibetan hot springs, China. Environ. Microbiol. 15, 1160–1175 (2013).

    Article  Google Scholar 

  40. Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    Article  Google Scholar 

  41. Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196 (2007).

    Article  Google Scholar 

  42. Peng, Y., Leung, H. C., Yiu, S. M. & Chin, F. Y. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012).

    Article  Google Scholar 

  43. Dick, G. J. et al. Community-wide analysis of microbial genome sequence signatures. Genome Biol. 10, R85 (2009).

    Article  Google Scholar 

  44. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  Google Scholar 

  45. Wrighton, K. C. et al. Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science 337, 1661–1665 (2012).

    Article  Google Scholar 

  46. Parks, D. H. et al. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Article  Google Scholar 

  47. Noguchi, H., Park, J. & Takagi, T. MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res. 34, 5623–5630 (2006).

    Article  Google Scholar 

  48. Lagesen, K. et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100–3108 (2007).

    Article  Google Scholar 

  49. Rawlings, N. D., Waller, M., Barrett, A. J. & Bateman, A. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 42, D503–D509 (2014).

    Article  Google Scholar 

  50. Cantarel, B. L. et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37, D233–D238 (2009).

    Article  Google Scholar 

  51. Petersen, T. N., Brunak, S., von Heijne, G. & Nielsen, H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods 8, 785–786 (2011).

    Article  Google Scholar 

  52. Cotter, D., Maer, A., Guda, C., Saunders, B. & Subramaniam, S. LMPD: LIPID MAPS proteome database. Nucleic Acids Res. 34, D507–D510 (2006).

    Article  Google Scholar 

  53. Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).

    Article  Google Scholar 

  54. Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    Article  Google Scholar 

  55. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank R. Thauer for critical reading of the manuscript, chief scientist C. Vetriani for logistical support, as well as the officers, crew and pilots of R/V Atlantis and DSV Alvin for their expert help at sea. This work has been financially supported by the Natural Science Foundation of China (grant numbers 91228201, 31290232, 41525011 and 41506163), the China Ocean Mineral Resources R&D Association (grant DY125-15-T-04), the Natural Science Foundation of Guangdong and Shenzhen of China (grant numbers 2014A030310056 and JCY20140828163633985) and the US National Science Foundation (grant numbers MCB-0456689 and MCB-0702677 to S.M.S.).

Author information

Authors and Affiliations

Authors

Contributions

Y.H., M.L., S.M.S. and F.W. designed the experiment and analysis, and interpreted the data. S.M.S. carried out sampling and preservation. V.P. prepared samples for nucleic acid extractions and sequencing, and performed quantitative PCR. Y.H., M.L., X.F. and J.F. performed the bioinformatics analyses. J.X. conducted the protein expression, purification and enzyme assay. Y.H., M.L., S.M.S. and F.W. wrote the manuscript, in consultation with all other authors.

Corresponding author

Correspondence to F. Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Figures 1-5 and Tables 1-15 (PDF 1729 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Li, M., Perumal, V. et al. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nat Microbiol 1, 16035 (2016). https://doi.org/10.1038/nmicrobiol.2016.35

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.35

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology