Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production

Abstract

By 2030, the global population will be 8.5 billion, placing pressure on international poultry production, of which China is a key producer1. From April 2017, China will implement the withdrawal of colistin as a growth promoter, removing over 8,000 tonnes per year from the Chinese farming sector2. To understand the impact of banning colistin and the epidemiology of multi-drug-resistant (MDR) Escherichia coli (using blaNDM and mcr-1 as marker genes), we sampled poultry, dogs, sewage, wild birds and flies. Here, we show that mcr-1, but not blaNDM, is prevalent in hatcheries, but blaNDM quickly contaminates flocks through dogs, flies and wild birds. We also screened samples directly for resistance genes to understand the true breadth and depth of the environmental and animal resistome. Direct sample testing for blaNDM and mcr-1 in hatcheries, commercial farms, a slaughterhouse and supermarkets revealed considerably higher levels of positive samples than the blaNDM- and mcr-1-positive E. coli, indicating a substantial segment of unseen resistome—a phenomenon we have termed the ‘phantom resistome’. Whole-genome sequencing identified common blaNDM-positive E. coli shared among farms, flies, dogs and farmers, providing direct evidence of carbapenem-resistant E. coli transmission and environmental contamination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sampling diagram and transmission routes of blaNDM and mcr-1.
Figure 2: Detection of blaNDM and mcr-1 in the poultry-production environment.
Figure 3: Genomic analysis of CREC (n = 161) and CSEC (n = 13) isolates of various origins, as well as 12 international human CREC isolates.
Figure 4: Genetic environment of NDM in 161 CREC isolates.

Similar content being viewed by others

References

  1. World population projected to reach 9.7 billion by 2050. United Nations (29 July 2015); http://www.un.org/en/development/desa/news/population/2015-report.html

  2. Walsh, T. R. & Wu, Y. N. China bans colistin as a feed additive for animals. Lancet Infect. Dis. 16, 1102–1103 (2016).

    Article  Google Scholar 

  3. Kumarasamy, K. K. et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect. Dis. 10, 597–602 (2010).

    Article  CAS  Google Scholar 

  4. Munoz-Price, L. S. et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect. Dis. 13, 785–796 (2013).

    Article  Google Scholar 

  5. Chen, Y., Zhou, Z., Jiang, Y. & Yu, Y. Emergence of NDM-1-producing Acinetobacter baumannii in China. J. Antimicrob. Chemother. 66, 1255–1259 (2011).

    Article  CAS  Google Scholar 

  6. Wang, X. et al. High rate of New Delhi metallo-β-lactamase 1-producing bacterial infection in China. Clin. Infect. Dis. 56, 161–162 (2013).

    Article  Google Scholar 

  7. Zhu, J. et al. Outbreak of NDM-1-producing Klebsiella pneumoniae ST76 and ST37 isolates in neonates. Eur. J. Clin. Microbiol. Infect. Dis. 35, 611–618 (2016).

    Article  CAS  Google Scholar 

  8. Woodford, N., Wareham, D. W., Guerra, B. & Teale, C. Carbapenemase-producing Enterobacteriaceae and non-Enterobacteriaceae from animals and the environment: an emerging public health risk of our own making? J. Antimicrob. Chemother. 69, 287–291 (2014).

    Article  CAS  Google Scholar 

  9. Michael, G. B. et al. Emerging issues in antimicrobial resistance of bacteria from food-producing animals. Future Microbiol. 10, 427–443 (2015).

    Article  CAS  Google Scholar 

  10. Poirel, L., Stephan, R., Perreten, V. & Nordmann, P. The carbapenemase threat in the animal world: the wrong culprit. J. Antimicrob. Chemother. 69, 2007–2008 (2014).

    Article  CAS  Google Scholar 

  11. Falagas, M. E., Karageorgopoulos, D. E. & Nordmann, P. Therapeutic options for infections with Enterobacteriaceae producing carbapenem-hydrolyzing enzymes. Future Microbiol. 6, 653–666 (2011).

    Article  CAS  Google Scholar 

  12. Halaby, T., Al Naiemi, N., Kluytmans, J., van der Palen, J. & Vandenbroucke-Grauls, C. M. Emergence of colistin resistance in Enterobacteriaceae after the introduction of selective digestive tract decontamination in an intensive care unit. Antimicrob. Agents Chemother. 57, 3224–3229 (2013).

    Article  CAS  Google Scholar 

  13. Liu, Y. Y. et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16, 161–168 (2016).

    Article  Google Scholar 

  14. McGann, P. et al. Escherichia coli harboring mcr-1 and blaCTX-M on a novel IncF plasmid: first report of mcr-1 in the USA. Antimicrob. Agents Chemother. 60, 4420–4421 (2016).

    Article  CAS  Google Scholar 

  15. Schwarz, S. & Johnson, A. P. Transferable resistance to colistin: a new but old threat. J. Antimicrob. Chemother. 71, 2066–2070 (2016).

    Article  Google Scholar 

  16. Espedido, B. A., Dimitrijovski, B., van Hal, S. J. & Jensen, S. O. The use of whole-genome sequencing for molecular epidemiology and antimicrobial surveillance: identifying the role of IncX3 plasmids and the spread of blaNDM-4-like genes in the Enterobacteriaceae. J. Clin. Pathol. 68, 835–838 (2015).

    Article  CAS  Google Scholar 

  17. Zhang, R. M., Wang, Y. et al. Characterization of NDM-1-producing carbapenemase in Acinetobacter spp. and E. coli isolates from diseased pigs. Front. Agr. Sci. Eng. 2, 223–229 (2015).

    Article  Google Scholar 

  18. Zhi, C., Lv, L., Yu, L. F., Doi, Y. & Liu, J.-H. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect. Dis. 16, 292–293 (2016).

    Article  Google Scholar 

  19. Hassan, B., Carvalho, M., Mushtaq, A. et al. Environmental Dissemination of MDRB Carrying blaNDM and blaCTX-M-15 in Hospital Environment, Drinking Water, Birds and Insects (ECCMID, 2015).

    Google Scholar 

  20. Wang, Y. et al. Multidrug resistance gene cfr in methicillin-resistant coagulase-negative staphylococci from chickens, ducks, and pigs in China. Int. J. Med. Microbiol. 303, 84–87 (2013).

    Article  CAS  Google Scholar 

  21. Poirel, L., Walsh, T. R., Cuvillier, V. & Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 70, 119–123 (2011).

    Article  CAS  Google Scholar 

  22. M100-S25: Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement (Clinical and Laboratory Standards, 2015).

  23. Breakpoint Tables for Interpretation of MICs and Zone Diameters v.6.0 (European Committee on Antimicrobial Susceptibility Testing, 2016); http://www.eucast.org/clinical_breakpoints/

  24. PlasmidFinder 1.3 (Center for Genomic Epidemiology, accessed 10 June 2016); https://cge.cbs.dtu.dk/services/PlasmidFinder/

  25. Fang, L. et al. Co-spread of metal and antibiotic resistance within ST3-IncHI2 plasmids from E. coli isolates of food-producing animals. Sci. Rep. 6, 25312 (2016).

    Article  CAS  Google Scholar 

  26. Yamaguchi, Y., Park, J. H. & Inouye, M. Toxin–antitoxin systems in bacteria and archaea. Annu. Rev. Genet. 45, 61–79 (2011).

    Article  CAS  Google Scholar 

  27. Clermont, O., Bonacorsi, S. & Bingen, E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 66, 4555–4558 (2000).

    Article  CAS  Google Scholar 

  28. Treangen, T. J., Ondov, B. D., Koren, S. & Phillippy, A. M. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 15, 524 (2014).

    Article  Google Scholar 

  29. Wirth, T. et al. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol. Microbiol. 60, 1136–1151 (2006).

    Article  CAS  Google Scholar 

  30. Tang, J., Hanage, W. P., Fraser, C. & Corander, J. Identifying currents in the gene pool for bacterial populations using an integrative approach. PLoS Comput. Biol. 5, e1000455 (2009).

    Article  Google Scholar 

  31. Corander, J., Marttinen, P., Siren, J. & Tang, J. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinformatics 9, 539 (2008).

    Article  Google Scholar 

  32. Cheng, L., Connor, T. R., Siren, J., Aanensen, D. M. & Corander, J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol. Biol. Evol. 30, 1224–1228 (2013).

    Article  CAS  Google Scholar 

  33. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  Google Scholar 

  34. Price, M. N., Dehal, P. S. & Arkin, A. P. Fasttree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    Article  Google Scholar 

  35. Huson, D. H. & Scornavacca, C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst. Biol. 61, 1061–1067 (2012).

    Article  Google Scholar 

  36. Huson, D. H. et al. Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinformatics 8, 460 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (grant nos 31530076, 31422055 and 81661138002) and the National Key Basic Research Program of China (grant no. 2013CB127200). T.R.W. and J.M.T. were also supported by MRC grant DETER-XDR-CHINA (MR/P007295/1).

Author information

Authors and Affiliations

Authors

Contributions

The study was planned and directed by J.S. and T.R.W. Experiments were conducted by Y.Wang, R.Z., J.Li, W.Y., Z.L., Z.S., L.L. and M.L. Sampling was conducted by Y.Wang, R.Z., J.Li, J.Liu and Q-d.Z. Data analysis was performed by Z.W., S.S., Y.Z., S.W., J.M.T., C.W., Q-j.Z. and Y.Wu. The manuscript was prepared by J.S., T.R.W., Y.Wang and R.Z.

Corresponding authors

Correspondence to Timothy R. Walsh or Jianzhong Shen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1 and 2; Supplementary Tables 1, 3, 4, 6 and 7. (PDF 1453 kb)

Supplementary Tables 2 and 5

Supplementary Table 2: Characterization of genome-sequenced E. coli isolates (n = 174, 161 CREC and 13 CSEC); Supplementary Table 5: MIC values of all E. coli isolates (n = 216, 161 CREC and 55 CSEC). (XLSX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, R., Li, J. et al. Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production. Nat Microbiol 2, 16260 (2017). https://doi.org/10.1038/nmicrobiol.2016.260

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.260

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing