Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intermediate filaments enable pathogen docking to trigger type 3 effector translocation

Abstract

Type 3 secretion systems (T3SSs) of bacterial pathogens translocate bacterial effector proteins that mediate disease into the eukaryotic cytosol. Effectors traverse the plasma membrane through a translocon pore formed by T3SS proteins. In a genome-wide selection, we identified the intermediate filament vimentin as required for infection by the T3SS-dependent pathogen S. flexneri. We found that vimentin is required for efficient T3SS translocation of effectors by S. flexneri and other pathogens that use T3SS, Salmonella enterica serovar Typhimurium and Yersinia pseudotuberculosis. Vimentin and the intestinal epithelial intermediate filament keratin 18 interact with the C-terminus of the Shigella translocon pore protein IpaC. Vimentin and its interaction with IpaC are dispensable for pore formation, but are required for stable docking of S. flexneri to cells; moreover, stable docking triggers effector secretion. These findings establish that stable docking of the bacterium specifically requires intermediate filaments, is a process distinct from pore formation, and is a prerequisite for effector secretion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Efficient T3SS translocation depends on intermediate filaments.
Figure 2: The S. flexneri T3SS translocon pore protein IpaC and its homologues in other pathogens interact with intermediate filaments and this interaction is required for efficient translocation.
Figure 3: Intermediate filaments are dispensable for translocon pore formation.
Figure 4: E. coli pSfT3SS reproduces S. flexneri phenotypes.
Figure 5: The interaction of intermediate filaments with the translocon pore is required for efficient docking of S. flexneri.
Figure 6: Activation of effector secretion requires S. flexneri docking.

Similar content being viewed by others

References

  1. Galan, J. E., Lara-Tejero, M., Marlovits, T. C. & Wagner, S. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu. Rev. Microbiol. 68, 415–438 (2014).

    Article  CAS  Google Scholar 

  2. Galan, J. E. & Wolf-Watz, H. Protein delivery into eukaryotic cells by type III secretion machines. Nature 444, 567–573 (2006).

    Article  CAS  Google Scholar 

  3. Cheung, M. et al. Three-dimensional electron microscopy reconstruction and cysteine-mediated crosslinking provide a model of the type III secretion system needle tip complex. Mol. Microbiol. 95, 31–50 (2015).

    Article  CAS  Google Scholar 

  4. Kubori, T. et al. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280, 602–605 (1998).

    Article  CAS  Google Scholar 

  5. Menard, R., Sansonetti, P. & Parsot, C. The secretion of the Shigella flexneri Ipa invasins is activated by epithelial cells and controlled by IpaB and IpaD. EMBO J. 13, 5293–5302 (1994).

    Article  CAS  Google Scholar 

  6. Veenendaal, A. K. et al. The type III secretion system needle tip complex mediates host cell sensing and translocon insertion. Mol. Microbiol. 63, 1719–1730 (2007).

    Article  CAS  Google Scholar 

  7. Blocker, A. et al. The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. J. Cell Biol. 147, 683–693 (1999).

    Article  CAS  Google Scholar 

  8. Kenjale, R. et al. The needle component of the type III secreton of Shigella regulates the activity of the secretion apparatus. J. Biol. Chem. 280, 42929–42937 (2005).

    Article  CAS  Google Scholar 

  9. Meghraoui, A., Schiavolin, L. & Allaoui, A. Single amino acid substitutions on the needle tip protein IpaD increased Shigella virulence. Microbes Infect. 16, 532–539 (2014).

    Article  CAS  Google Scholar 

  10. Schiavolin, L. et al. Functional insights into the Shigella type III needle tip IpaD in secretion control and cell contact. Mol. Microbiol. 88, 268–282 (2013).

    Article  CAS  Google Scholar 

  11. Stamm, L. M. & Goldberg, M. B. Microbiology. Establishing the secretion hierarchy. Science 331, 1147–1148 (2011).

    Article  CAS  Google Scholar 

  12. Lara-Tejero, M., Kato, J., Wagner, S., Liu, X. & Galan, J. E. A sorting platform determines the order of protein secretion in bacterial type III systems. Science 331, 1188–1191 (2011).

    Article  CAS  Google Scholar 

  13. Misselwitz, B. et al. Salmonella enterica serovar Typhimurium binds to HeLa cells via Fim-mediated reversible adhesion and irreversible type three secretion system 1-mediated docking. Infect. Immun. 79, 330–341 (2011).

    Article  CAS  Google Scholar 

  14. Lara-Tejero, M. & Galan, J. E. Salmonella enterica serovar typhimurium pathogenicity island 1-encoded type III secretion system translocases mediate intimate attachment to nonphagocytic cells. Infect. Immun. 77, 2635–2642 (2009).

    Article  CAS  Google Scholar 

  15. Nhieu, G. T. & Sansonetti, P. J. Mechanism of Shigella entry into epithelial cells. Curr. Opin. Microbiol. 2, 51–55 (1999).

    Article  CAS  Google Scholar 

  16. Ogawa, M. & Sasakawa, C. Intracellular survival of Shigella. Cell. Microbiol. 8, 177–184 (2006).

    Article  CAS  Google Scholar 

  17. Tran Van Nhieu, G., Ben-Ze'ev, A. & Sansonetti, P. J. Modulation of bacterial entry into epithelial cells by association between vinculin and the Shigella IpaA invasin. EMBO J. 16, 2717–2729 (1997).

    Article  CAS  Google Scholar 

  18. Mounier, J. et al. Rho family GTPases control entry of Shigella flexneri into epithelial cells but not intracellular motility. J. Cell Sci. 112(Pt 13), 2069–2080 (1999).

    CAS  PubMed  Google Scholar 

  19. Handa, Y. et al. Shigella IpgB1 promotes bacterial entry through the ELMO-Dock180 machinery. Nature Cell Biol. 9, 121–128 (2007).

    Article  CAS  Google Scholar 

  20. Hachani, A. et al. IpgB1 and IpgB2, two homologous effectors secreted via the Mxi-Spa type III secretion apparatus, cooperate to mediate polarized cell invasion and inflammatory potential of Shigella flexenri. Microbes Infect. 10, 260–268 (2008).

    Article  CAS  Google Scholar 

  21. Garza-Mayers, A. C., Miller, K. A., Russo, B. C., Nagda, D. V. & Goldberg, M. B. Shigella flexneri regulation of ARF6 activation during bacterial entry via an IpgD-mediated positive feedback loop. MBio 6, e02584 (2015).

    Article  Google Scholar 

  22. Carette, J. E. et al. Haploid genetic screens in human cells identify host factors used by pathogens. Science 326, 1231–1235 (2009).

    Article  CAS  Google Scholar 

  23. Carette, J. E. et al. Ebola virus entry requires the cholesterol transporter Niemann–Pick C1. Nature 477, 340–343 (2011).

    Article  CAS  Google Scholar 

  24. Bernardini, M. L., Mounier, J., d'Hauteville, H., Coquis-Rondon, M. & Sansonetti, P. J. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc. Natl Acad. Sci. USA 86, 3867–3871 (1989).

    Article  CAS  Google Scholar 

  25. Ivaska, J., Pallari, H. M., Nevo, J. & Eriksson, J. E. Novel functions of vimentin in cell adhesion, migration, and signalling. Exp. Cell Res. 313, 2050–2062 (2007).

    Article  CAS  Google Scholar 

  26. Eriksson, J. E. et al. Introducing intermediate filaments: from discovery to disease. J. Clin. Invest. 119, 1763–1771 (2009).

    Article  CAS  Google Scholar 

  27. Mor-Vaknin, N. et al. Murine colitis is mediated by vimentin. Sci. Rep. 3, 1045 (2013).

    Article  Google Scholar 

  28. Colucci-Guyon, E. et al. Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell 79, 679–694 (1994).

    Article  CAS  Google Scholar 

  29. Chu, P. G. & Weiss, L. M. Keratin expression in human tissues and neoplasms. Histopathology 40, 403–439 (2002).

    Article  CAS  Google Scholar 

  30. Jepson, M. A., Mason, C. M., Bennett, M. K., Simmons, N. L. & Hirst, B. H. Co-expression of vimentin and cytokeratins in M cells of rabbit intestinal lymphoid follicle-associated epithelium. Histochem. J. 24, 33–39 (1992).

    Article  CAS  Google Scholar 

  31. Leube, R. E., Moch, M. & Windoffer, R. Intermediate filaments and the regulation of focal adhesion. Curr. Opin. Cell Biol. 32, 13–20 (2015).

    Article  CAS  Google Scholar 

  32. Mor-Vaknin, N., Punturieri, A., Sitwala, K. & Markovitz, D. M. Vimentin is secreted by activated macrophages. Nature Cell Biol. 5, 59–63 (2003).

    Article  CAS  Google Scholar 

  33. Zou, Y., He, L. & Huang, S. H. Identification of a surface protein on human brain microvascular endothelial cells as vimentin interacting with Escherichia coli invasion protein IbeA. Biochem. Biophys. Res. Commun. 351, 625–630 (2006).

    Article  CAS  Google Scholar 

  34. Picking, W. L. et al. Identification of functional regions within invasion plasmid antigen C (IpaC) of Shigella flexneri. Mol. Microbiol. 39, 100–111 (2001).

    Article  CAS  Google Scholar 

  35. Harrington, A. et al. Characterization of the interaction of single tryptophan containing mutants of IpaC from Shigella flexneri with phospholipid membranes. Biochemistry 45, 626–636 (2006).

    Article  CAS  Google Scholar 

  36. Kuwae, A. et al. Shigella invasion of macrophage requires the insertion of IpaC into the host plasma membrane. Functional analysis of IpaC. J. Biol. Chem. 276, 32230–32239 (2001).

    Article  CAS  Google Scholar 

  37. Scherer, C. A., Cooper, E. & Miller, S. I. The Salmonella type III secretion translocon protein SspC is inserted into the epithelial cell plasma membrane upon infection. Mol. Microbiol. 37, 1133–1145 (2000).

    Article  CAS  Google Scholar 

  38. Carlson, S. A., Omary, M. B. & Jones, B. D. Identification of cytokeratins as accessory mediators of Salmonella entry into eukaryotic cells. Life Sci. 70, 1415–1426 (2002).

    Article  CAS  Google Scholar 

  39. Schmitz, A. M., Morrison, M. F., Agunwamba, A. O., Nibert, M. L. & Lesser, C. F. Protein interaction platforms: visualization of interacting proteins in yeast. Nature Methods 6, 500–502 (2009).

    Article  CAS  Google Scholar 

  40. Terry, C. M. et al. The C-terminus of IpaC is required for effector activities related to Shigella invasion of host cells. Microb. Pathog. 45, 282–289 (2008).

    Article  CAS  Google Scholar 

  41. Kwuan, L., Adams, W. & Auerbuch, V. Impact of host membrane pore formation by the Yersinia pseudotuberculosis type III secretion system on the macrophage innate immune response. Infect. Immun. 81, 905–914 (2013).

    Article  CAS  Google Scholar 

  42. Viboud, G. I. & Bliska, J. B. Measurement of pore formation by contact-dependent type III protein secretion systems. Methods Enzymol. 358, 345–350 (2002).

    Article  CAS  Google Scholar 

  43. Viboud, G. I. & Bliska, J. B. A bacterial type III secretion system inhibits actin polymerization to prevent pore formation in host cell membranes. EMBO J. 20, 5373–5382 (2001).

    Article  CAS  Google Scholar 

  44. Reeves, A. Z. et al. Engineering Escherichia coli into a protein delivery system for mammalian cells. ACS Synth. Biol. 4, 644–654 (2015).

    Article  CAS  Google Scholar 

  45. Vanaja, S. K., Rathinam, V. A. & Fitzgerald, K. A. Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol. 25, 308–315 (2015).

    Article  CAS  Google Scholar 

  46. Shi, J. et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187–192 (2014).

    Article  CAS  Google Scholar 

  47. Dos Santos, G. et al. Vimentin regulates activation of the NLRP3 inflammasome. Nature Commun. 6, 6574 (2015).

    Article  CAS  Google Scholar 

  48. Batchelor, M. et al. Involvement of the intermediate filament protein cytokeratin-18 in actin pedestal formation during EPEC infection. EMBO Rep. 5, 104–110 (2004).

    Article  CAS  Google Scholar 

  49. Campbell-Valois, F. X. et al. A fluorescent reporter reveals on/off regulation of the Shigella type III secretion apparatus during entry and cell-to-cell spread. Cell Host Microbe 15, 177–189 (2014).

    Article  CAS  Google Scholar 

  50. Picking, W. L. et al. IpaD of Shigella flexneri is independently required for regulation of Ipa protein secretion and efficient insertion of IpaB and IpaC into host membranes. Infect. Immun. 73, 1432–1440 (2005).

    Article  CAS  Google Scholar 

  51. Roehrich, A. D., Guillossou, E., Blocker, A. J. & Martinez-Argudo, I. Shigella IpaD has a dual role: signal transduction from the type III secretion system needle tip and intracellular secretion regulation. Mol. Microbiol. 87, 690–706 (2013).

    Article  CAS  Google Scholar 

  52. Labrec, E. H., Schneider, H., Magnani, T. J. & Formal, S. B. Epithelial cell penetration as an essential step in the pathogenesis of bacillary dysentery. J. Bacteriol. 88, 1503–1518 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Maurelli, A. T., Baudry, B., d'Hauteville, H., Hale, T. L. & Sansonetti, P. J. Cloning of plasmid DNA sequences involved in invasion of HeLa cells by Shigella flexneri. Infect. Immun. 49, 164–171 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Menard, R., Sansonetti, P. J. & Parsot, C. Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells. J. Bacteriol. 175, 5899–5906 (1993).

    Article  CAS  Google Scholar 

  55. Russo, B. C. et al. A Francisella tularensis locus required for spermine responsiveness is necessary for virulence. Infect. Immun. 79, 3665–3676 (2011).

    Article  CAS  Google Scholar 

  56. Labigne-Roussel, A. F., Lark, D., Schoolnik, G. & Falkow, S. Cloning and expression of an afimbrial adhesin (AFA-I) responsible for P blood group-independent, mannose-resistant hemagglutination from a pyelonephritic Escherichia coli strain. Infect. Immun. 46, 251–259 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Carette, J. E. et al. Global gene disruption in human cells to assign genes to phenotypes by deep sequencing. Nature Biotechnol. 29, 542–546 (2011).

    Article  CAS  Google Scholar 

  58. Reimand, J., Arak, T. & Vilo, J. g:Profiler--a web server for functional interpretation of gene lists (2011 update). Nucleic Acids Res. 39, W307–W315 (2011).

    Article  CAS  Google Scholar 

  59. Heindl, J. E., Saran, I., Yi, C. R., Lesser, C. F. & Goldberg, M. B. Requirement for formin-induced actin polymerization during spread of Shigella flexneri. Infect. Immun. 78, 193–203 (2010).

    Article  CAS  Google Scholar 

  60. Costa, S. C. & Lesser, C. F. A multifunctional region of the Shigella type 3 effector IpgB1 is important for secretion from bacteria and membrane targeting in eukaryotic cells. PLoS ONE 9, e93461 (2014).

    Article  Google Scholar 

  61. Bahrani, F. K., Sansonetti, P. J. & Parsot, C. Secretion of Ipa proteins by Shigella flexneri: inducer molecules and kinetics of activation. Infect. Immun. 65, 4005–4010 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Soyer, M. & Dumenil, G. A laminar-flow chamber assay for measuring bacterial adhesion under shear stress. Methods Mol. Biol. 799, 185–195 (2012).

    Article  CAS  Google Scholar 

  63. Mikaty, G. et al. Extracellular bacterial pathogen induces host cell surface reorganization to resist shear stress. PLoS Pathog. 5, e1000314 (2009).

    Article  Google Scholar 

  64. Moreau-Marquis, S. et al. The ΔF508-CFTR mutation results in increased biofilm formation by Pseudomonas aeruginosa by increasing iron availability. Am. J. Physiol. Lung Cell. Mol. Physiol. 295, L25–L37 (2008).

    Article  CAS  Google Scholar 

  65. Muller, N. F. et al. Trimeric autotransporter adhesin-dependent adherence of Bartonella henselae, Bartonella quintana, and Yersinia enterocolitica to matrix components and endothelial cells under static and dynamic flow conditions. Infect. Immun. 79, 2544–2553 (2011).

    Article  Google Scholar 

  66. Yi, C. R. et al. Systematic analysis of bacterial effector-postsynaptic density 95/disc large/zonula occludens-1 (PDZ) domain interactions demonstrates Shigella OspE protein promotes protein kinase C activation via PDLIM proteins. J. Biol. Chem. 289, 30101–30113 (2014).

    Article  CAS  Google Scholar 

  67. Costa, S. C. et al. A new means to identify type 3 secreted effectors: functionally interchangeable class IB chaperones recognize a conserved sequence. MBio 3, e00243-11 (2012).

    Article  Google Scholar 

  68. Baxt, L. A. & Goldberg, M. B. Host and bacterial proteins that repress recruitment of LC3 to Shigella early during infection. PLoS ONE 9, e94653 (2014).

    Article  Google Scholar 

  69. Sievers, F. & Higgins, D. G. Clustal omega. Curr. Protoc. Bioinformatics 48, 3.13.11–13.13.16 (2014).

    Google Scholar 

Download references

Acknowledgements

We thank Victor Faundez, Cammie Lesser, Wendy Picking and William Picking, Joan Mecsas, Victoria Auerbuch-Stone, Beth McCormick and Ana Maldonado-Contreras, and Claude Parsot for cell lines, bacterial strains, reagents, technical assistance and protocols, Alexandra Wiscovitch for technical assistance, and Matthew Brown for critical reading of the manuscript. This work was funded by National Institutes of Health (NIH) RO1 AI081724 (to M.B.G.), NIH T32 AI007061 (to B.C.R.), NIH F32 AI092967 (to L.A.B.), NIH F32 AI114162 (to B.C.R.), a career development award through the New England Regional Center of Excellence in Biodefense and Emerging Infectious Disease and the Institute of Chemistry and Cell Biology (ICCB)-Longwood Facility at Harvard Medical School (NIH U54 AI057159, to L.M.S.), and the Coordination for the Improvement of Higher Education Personnel (CAPES) Foundation, Ministry of Education of Brazil, Brasilia-DF, 70040-020, Brazil (to A.L.Q.).

Author information

Authors and Affiliations

Authors

Contributions

B.C.R., M.B.G., and L.M.S. wrote the manuscript. B.C.R., M.B.G., L.M.S., M.R., S.P.W., and L.A.B. designed experiments and interpreted data. B.C.R., L.M.S., M.R., L.R.R., A.L.Q., B.B.H., L.A.B., C.M.K., S.B., G.M., E.K., L.R., Y.F., and N.M-V. performed experiments. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Marcia B. Goldberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Table 2, Figures 1-15 and References. (PDF 2842 kb)

Supplementary Table 1

Significantly enriched genes identified by selection. (XLSX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russo, B., Stamm, L., Raaben, M. et al. Intermediate filaments enable pathogen docking to trigger type 3 effector translocation. Nat Microbiol 1, 16025 (2016). https://doi.org/10.1038/nmicrobiol.2016.25

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.25

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology